91 research outputs found

    Direct chemical in-depth profile analysis and thickness quantification of nanometer multilayers using pulsed-rf-GD-TOFMS

    Get PDF
    7 páginas, 3 figuras, 2 tablas.Nanometer depth resolution is investigated using an innovative pulsed-radiofrequency glow discharge time-of-flight mass spectrometer (pulsed-rf-GD-TOFMS). A series of ultra-thin (in nanometers approximately) Al/Nb bilayers, deposited on Si wafers by dc-magnetron sputtering, is analyzed. An Al layer is first deposited on the Si substrate with controlled and different values of the layer thickness, t Al. Samples with t Al = 50, 20, 5, 2, and 1 nm have been prepared. Then, a Nb layer is deposited on top of the Al one, with a thickness t Nb = 50 nm that is kept constant along the whole series. Qualitative depth profiles of those layered sandwich-type samples are determined using our pulsed-rf-GD-TOFMS set-up, which demonstrated to be able to detect and measure ultra-thin layers (even of 1 nm). Moreover, Gaussian fitting of the internal Al layer depth profile is used here to obtain a calibration curve, allowing thickness estimation of such nanometer layers. In addition, the useful yield (estimation of the number of detected ions per sputtered atom) of the employed pulsed-rf-GD-TOFMS system is evaluated for Al at the selected operating conditions, which are optimized for the in-depth profile analysis with high depth resolution.This work is supported by the European Union 6th framework program within the EMDPA project (contract No 032202 (NMP3-CT-2006-032202)) and by Spanish Ministry of Science (grant No MAT2007-65097-C02 and FIS2008-06249). R. Valledor acknowledges financial support from FPU Ph.D. Grant from Ministry of Education of Spain. Additionally, J. Pisonero and C. Quiros acknowledge financial support from “Ramon y Cajal” Research Program of the Ministry of Education of Spain, cofinanced by the European Social Fund.Peer reviewe

    Protective Effect of Quercetin Treatment on Gut Microbiota Imbalance in Obesity-Associated NAFLD in Patients and in HFD-FED Mice

    Get PDF
    2 p.Gut microbiota is involved in obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD). Quercetin may modulate the intestinal microbiota composition, suggesting therapeutic potential in NAFLD. The present study aims to establish the role of gut microbiota imbalance in obesity-related NAFLD development in patients and in an in vivo model and to investigate benefits of experimental treatment with quercetin. Resumen de un trabajo resultado del proyecto de investigaciĂłn financiado por la ConsejerĂ­a de EducaciĂłn de la Junta de Castilla y LeĂłn (referencia LE063U16)S

    Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS

    Get PDF
    A method has been developed for the direct and simultaneous multielement determination of Cu, Zn, Sn, and Pb in soil and sediment samples using femtosecond laser ablation inductively coupled plasma mass spectrometry (fs-LA-ICPMS) in combination with isotope dilution mass spectrometry (IDMS). The in-cell isotope dilution fs-LA-ICPMS method proposed in this work was based on the quasi-simultaneous ablation of the natural abundance sample and the isotopically enriched solid spike, which was performed using a high repetition rate laser and a fast scanning beam device in a combined manner. Both the sample preparation procedure and the total analysis time have been drastically reduced, in comparison with previous approaches, since a unique multielement isotopically enriched solid spike was employed to analyze different powdered samples. Numerous experimental parameters were carefully selected (e.g., carrier gas flow rate, inlet diameter of the ablation cell, sample translation speed, scanner speed, etc.) in order to ensure the complete mixing between the sample and the solid spike aerosols. The proposed in-cell fs-LA-ICP-IDMS method was tested for the analysis of two soil (CRM 142R, GBW-07405) and two sediment (PACS-2, IAEA-405) reference materials, and the analysis of Cu, Zn, Sn, and Pb yielded good agreement of usually not more than 10% deviation from the certified values and precisions of less than 15% relative standard deviation. Furthermore, the concentrations were in agreement not only with the certified values but also with those obtained by ICP-IDMS after the microwave-assisted digestion of the solid samples, demonstrating therefore that in-cell fs-LA-ICP-IDMS opens the possibility for accurate and precise determinations of trace elements in powdered samples reducing the total sample preparation time to less than 5 min. Additionally, scanning electron microscope measurements showed that the aerosol generated by in-cell fs-LA-ICP-IDMS predominantly consisted of linear agglomerates of small particles (in the order of few tens of nanometers) and a few large spherical particles with diameters below 225 nm

    Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores

    Get PDF
    Self-aligned nanoporous TiO2templates synthesized via dc current electrochemical anodization have been carefully analyzed. The influence of environmental temperature during the anodization, ranging from 2 °C to ambient, on the structure and morphology of the nanoporous oxide formation has been investigated, as well as that of the HF electrolyte chemical composition, its concentration and their mixtures with other acids employed for the anodization. Arrays of self-assembled titania nanopores with inner pores diameter ranging between 50 and 100 nm, wall thickness around 20–60 nm and 300 nm in length, are grown in amorphous phase, vertical to the Ti substrate, parallel aligned to each other and uniformly disordering distributed over all the sample surface. Additional remarks about the photoluminiscence properties of the titania nanoporous templates and the magnetic behavior of the Ni filled nanoporous semiconductor Ti oxide template are also included

    Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: implications for calcification-related chronic inflammatory diseases

    Get PDF
    Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and gamma-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein gamma-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNF alpha, IL-1 beta and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application.Portuguese Science and Technology Foundation (FCT) [PTDC/SAU-ORG/117266/2010, PTDC/BIM-MEC/1168/2012, UID/Multi/ 04326/2013]; FCT fellowships [SFRH/BPD/70277/2010, SFRH/BD/111824/2015

    Molecular basis of targeted therapy in T/NKcell lymphoma/leukemia: A comprehensive genomic and immunohistochemical analysis of a panel of 33 cell lines

    Get PDF
    T and NK-cell lymphoma is a collection of aggressive disorders with unfavorable outcome, in which targeted treatments are still at a preliminary phase. To gain deeper insights into the deregulated mechanisms promoting this disease, we searched a panel of 31 representative T-cell and 2 NK-cell lymphoma/leukemia cell lines for predictive markers of response to targeted therapy. To this end, targeted sequencing was performed alongside the expression of specific biomarkers corresponding to potentially activated survival pathways. The study identified TP53, NOTCH1 and DNMT3A as the most frequently mutated genes. We also found common alterations in JAK/STAT and epigenetic pathways. Immunohistochemical analysis showed nuclear accumulation of MYC (in 85% of the cases), NFKB (62%), p-STAT (44%) and p-MAPK (30%). This panel of cell lines captures the complexity of T/NK-cell lymphoproliferative processes samples, with the partial exception of AITL cases. Integrated mutational and immunohistochemical analysis shows that mutational changes cannot fully explain the activation of key survival pathways and the resulting phenotypes. The combined integration of mutational/expression changes forms a useful tool with which new compounds may be assayed

    Prospects in Analytical Atomic Spectrometry

    Full text link
    Tendencies in five main branches of atomic spectrometry (absorption, emission, mass, fluorescence and ionization spectrometry) are considered. The first three techniques are the most widespread and universal, with the best sensitivity attributed to atomic mass spectrometry. In the direct elemental analysis of solid samples, the leading roles are now conquered by laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively-coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Prospects for analytical instrumentation are seen in higher productivity, portability, miniaturization, incorporation of advanced software, automated sample preparation and transition to the multifunctional modular architecture. Steady progress and growth in applications of plasma- and laser-based methods are observed. An interest towards the absolute (standardless) analysis has revived, particularly in the emission spectrometry.Comment: Proofread copy with an added full reference list of 279 citations. A pdf version of the final published review may be requested from Alexander Bol'shakov <[email protected]

    Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry

    Get PDF
    • …
    corecore