101 research outputs found

    The Unyvero P55 ‘sample-in, answer-out’ pneumonia assay: A performance evaluation

    Get PDF
    Background: O’Neill’s recent Review on Antimicrobial Resistance expressed the view that by 2020 high-income countries should make it mandatory to support antimicrobial prescribing with rapid diagnostic evidence whenever possible. Methods: Routine microbiology diagnosis of 95 respiratory specimens from patients with severe infection were compared with those generated by the Unyvero P55 test, which detects 20 pathogens and 19 antimicrobial resistance markers. Supplementary molecular testing for antimicrobial resistance genes, comprehensive culture methodology and 16S rRNA sequencing were performed. Results: Unyvero P55 produced 85 valid results, 67% of which were concordant with those from the routine laboratory. Unyvero P55 identified more potential pathogens per specimen than routine culture (1.34 vs. 0.47 per specimen). Independent verification using 16S rRNA sequencing and culture (n = 10) corroborated 58% of additional detections compared to routine microbiology. Overall the average sensitivity for organism detection by Unyvero P55 was 88.8% and specificity was 94.9%. While Unyvero P55 detected more antimicrobial resistance markers than routine culture, some instances of phenotypic resistance were missed. Conclusions: The Unyvero P55 is a rapid pathogen detection test for lower respiratory specimens, which identifies a larger number of pathogens than routine microbiology. The clinical significance of these additional organisms is yet to be determined. Further studies are required to determine the effect of the test in practise on antimicrobial prescribing and patient outcomes

    SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale

    Get PDF
    A new biophysical model SURFATM-NH3, simulating the ammonia (NH<sub>3</sub>) exchange between terrestrial ecosystems and the atmosphere is presented. SURFATM-NH3 consists of two coupled models: (i) an energy budget model and (ii) a pollutant exchange model, which distinguish the soil and plant exchange processes. The model describes the exchanges in terms of adsorption to leaf cuticles and bi-directional transport through leaf stomata and soil. The results of the model are compared with the flux measurements over grassland during the GRAMINAE Integrated Experiment at Braunschweig, Germany. The dataset of GRAMINAE allows the model to be tested in various meteorological and agronomic conditions: prior to cutting, after cutting and then after the application of mineral fertilizer. The whole comparison shows close agreement between model and measurements for energy budget and ammonia fluxes. The major controls on the ground and plant emission potential are the physicochemical parameters for liquid-gas exchanges which are integrated in the compensation points for live leaves, litter and the soil surface. Modelled fluxes are highly sensitive to soil and plant surface temperatures, highlighting the importance of accurate estimates of these terms. The model suggests that the net flux depends not only on the foliar (stomatal) compensation point but also that of leaf litter. SURFATM-NH3 represents a comprehensive approach to studying pollutant exchanges and its link with plant and soil functioning. It also provides a simplified generalised approach (SVAT model) applicable for atmospheric transport models

    First Early Hominin from Central Africa (Ishango, Democratic Republic of Congo)

    Get PDF
    Despite uncontested evidence for fossils belonging to the early hominin genus Australopithecus in East Africa from at least 4.2 million years ago (Ma), and from Chad by 3.5 Ma, thus far there has been no convincing evidence of Australopithecus, Paranthropus or early Homo from the western (Albertine) branch of the Rift Valley. Here we report the discovery of an isolated upper molar (#Ish25) from the Western Rift Valley site of Ishango in Central Africa in a derived context, overlying beds dated to between ca. 2.6 to 2.0 Ma. We used µCT imaging to compare its external and internal macro-morphology to upper molars of australopiths, and fossil and recent Homo. We show that the size and shape of the enamel-dentine junction (EDJ) surface discriminate between Plio-Pleistocene and post-Lower Pleistocene hominins, and that the Ishango molar clusters with australopiths and early Homo from East and southern Africa. A reassessment of the archaeological context of the specimen is consistent with the morphological evidence and suggest that early hominins were occupying this region by at least 2 Ma

    Maassanalytische Bestimmung des Quecksilbers

    No full text

    Ice accretion on wires and anti-icing induced by Joule effect

    No full text
    International audienc

    Le givrage atmosphérique

    No full text
    International audienc
    • …
    corecore