12 research outputs found
Unexpected removal of the most neutral cationic pharmaceutical in river waters
Contamination of surface waters by pharmaceuticals is now widespread. There are few data on their environmental behaviour, particularly for those which are cationic at typical surface water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net negative charge, it was anticipated that bacterio-plankton in surface-waters would preferentially remove the most extensively-ionised cation at a given pH. To test this hypothesis, the persistence of four, widely-used, cationic pharmaceuticals, chloroquine, quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days. Results show that levamisole concentrations decreased by 19 % in microcosms containing bacterio-plankton, and by 13 % in a parallel microcosm containing tripeptide as a priming agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water pH, levamisole is 28 % cationic, while quinine is 91–98 % cationic, chloroquine 99 % cationic and fluphenazine 72–86 % cationic. Thus, the most neutral compound, levamisole, showed greatest removal, contradicting the expected bacterio-plankton preference for ionised molecules. However, levamisole was the most hydrophilic molecule, based on its octanol–water solubility coefficient (K ow). Overall, the pattern of pharmaceutical behaviour within the incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the octanol–water distribution coefficient, D ow, suggesting that improved predictive power, with respect to modelling bioaccumulation, may be needed to develop robust environmental risk assessments for cationic pharmaceuticals
Anoxic biodegradation of isosaccharinic acids at alkaline pH by natural microbial communities
10.1371/journal.pone.0137682PLoS ONE109e013768
Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil
Temporal temperature gradient electrophoresis (TTGE) analysis of 16S rRNA gene fragments amplified with primers selective for eubacteria and β-proteobacterial ammonia-oxidising bacteria (AOB) was used to analyse changes in bacterial and AOB community profiles of an upland pasture following soil improvement treatments (addition of sewage sludge and/or lime). Community structure was compared with changes in activity assessed by laboratory measurements of basal respiration and ammonia oxidation potentials, and with measurements of treatment- and time-related changes in soil characteristics. The predominant bacterial populations had a high degree of similarity under all treatment regimens, which was most pronounced early in the growing season. Most of the differences that occurred between soil samples with time could be accounted for by spatial and temporal variation; however, analysis of variance and cluster analysis of similarities between 16S rDNA TTGE profiles indicated that soil improvement treatments exerted some effect on community structure. Lime application had the greatest influence. The impact of soil improvement treatments on autotrophic ammonia oxidation was significant and sustained, especially in soils which had received sewage sludge and lime treatments in combination. However, despite obvious changes in soil characteristics, e.g. pH and soil nitrogen, increasing heterogeneity in the AOB community structure over time obscured the treatment effects observed at the beginning of the experiment. Nevertheless, time series analysis of AOB TTGE profiles indicated that the AOB community in improved soils was more dynamic than in control soils where populations were found to be relatively stable. These observations suggest that the AOB populations exhibited a degree of functional redundancy
Rate of α and β ISA degradation at each pH system sampled. Mean values (n = 3) are presented ± SE.
<p>Rate of α and β ISA degradation at each pH system sampled. Mean values (n = 3) are presented ± SE.</p
Eubacterial 16S rRNA gene clone libraries of CDP driven microcosms at pH7.5 (n = 47), 9.5 (n = 43) and 10.0 (n = 39).
<p>Clones were assigned to a family based on the closest sequence match obtained through MegaBLAST database search. Families associated to the group Clostridia are indicated by the black parentheses.</p
Removal of organic carbon from microcosms over 7 day sample period (A). Chemical analyses of microcosms operating at pH 7.5 (B), pH 9.5 (C) and pH 10.0 (D).
<p>Removal of organic carbon from microcosms over 7 day sample period (A). Chemical analyses of microcosms operating at pH 7.5 (B), pH 9.5 (C) and pH 10.0 (D).</p
Liquid phase carbon mass balance profiles for pH7.5 (A), 9.5 (B) and 10.0 (C) microcosms. Mean values (n = 3) are presented ± SE.
<p>Liquid phase carbon mass balance profiles for pH7.5 (A), 9.5 (B) and 10.0 (C) microcosms. Mean values (n = 3) are presented ± SE.</p