11,169 research outputs found

    Origin of the quasi-universality of the graphene minimal conductivity

    Full text link
    It is a fact that the minimal conductivity σ0\sigma_0 of most graphene samples is larger than the well-established universal value for ideal graphene 4e2/πh4e^2/\pi h; in particular, larger by a factor π\gtrsim\pi. Despite intense theoretical activity, this fundamental issue has eluded an explanation so far. Here we present fully atomistic quantum mechanical estimates of the graphene minimal conductivity where electron-electron interactions are considered in the framework of density functional theory. We show the first conclusive evidence of the dominant role on the minimal conductivity of charged impurities over ripples, which have no visible effect. Furthermore, in combination with the logarithmic scaling law for diffusive metallic graphene, we ellucidate the origin of the ubiquitously observed minimal conductivity in the range 8e2/h>σ04e2/h8e^2/h > \sigma_0 \gtrsim 4e^2/h.Comment: 6 pages, expanded version to appear in PR

    Transport in magnetically ordered Pt nanocontacts

    Get PDF
    Pt nanocontacts, like those formed in mechanically controlled break junctions, are shown to develop spontaneous local magnetic order. Our density functional calculations predict that a robust local magnetic order exists in the atoms presenting low coordination, i. e., those forming the atom-sized neck. In contrast to previous work, we thus find that the electronic transport can be spin-polarized, although the net value of the conductance still agrees with available experimental information. Experimental implications of the formation of this new type of nanomagnet are discussed.Comment: 4 pages, 3 figure

    Magnetism in graphene nano-islands

    Get PDF
    We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zig-zag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin, SS, consistent with Lieb's theorem for bipartite lattices. Triangles have a finite SS for all sizes whereas hexagons have S=0 and develop local moments above a critical size of 1.5\approx 1.5 nm.Comment: Published versio

    Anomalous exchange interaction between intrinsic spins in conducting graphene systems

    Get PDF
    We address the nature and possible observable consequences of singular one-electron states that appear when strong defects are introduced in the metallic family of graphene, namely, metallic carbon nanotubes and nanotori. In its simplest form, after creating two defects on the same sublattice, a state may emerge at the Fermi energy presenting very unusual properties: It is unique, normalizable, and features a wave function equally distributed around both defects. As a result, the exchange coupling between the magnetic moments generated by the two defects is anomalous. The intrinsic spins couple ferromagnetically, as expected, but do not present an antiferromagnetic excited state at any distance. We propose the use of metallic carbon nanotubes as a novel electronic device based on this anomalous coupling between spins which can be useful for the robust transmission of magnetic information at large distances.Comment: 5 pages 5 fugure

    Kondo effect and spin quenching in high-spin molecules on metal substrates

    Full text link
    Using a state-of-the art combination of density functional theory and impurity solver techniques we present a complete and parameter-free picture of the Kondo effect in the high-spin (S=3/2S=3/2) coordination complex known as Manganese Phthalocyanine adsorbed on the Pb(111) surface. We calculate the correlated electronic structure and corresponding tunnel spectrum and find an asymmetric Kondo resonance, as recently observed in experiments. Contrary to previous claims, the Kondo resonance stems from only one of three possible Kondo channels with origin in the Mn 3d-orbitals, its peculiar asymmetric shape arising from the modulation of the hybridization due to strong coupling to the organic ligand. The spectral signature of the second Kondo channel is strongly suppressed as the screening occurs via the formation of a many-body singlet with the organic part of the molecule. Finally, a spin-1/2 in the 3d-shell remains completely unscreened due to the lack of hybridization of the corresponding orbital with the substrate, hence leading to a spin-3/2 underscreened Kondo effect.Comment: 5 pages, 2 figure

    A critical analysis of vacancy-induced magnetism in mono and bilayer graphene

    Full text link
    The observation of intrinsic magnetic order in graphene and graphene-based materials relies on the formation of magnetic moments and a sufficiently strong mutual interaction. Vacancies are arguably considered the primary source of magnetic moments. Here we present an in-depth density functional theory study of the spin-resolved electronic structure of (monoatomic) vacancies in graphene and bilayer graphene. We use two different methodologies: supercell calculations with the SIESTA code and cluster-embedded calculations with the ALACANT package. Our results are conclusive: The vacancy-induced extended π\pi magnetic moments, which present long-range interactions and are capable of magnetic ordering, vanish at any experimentally relevant vacancy concentration. This holds for σ\sigma-bond passivated and un-passivated reconstructed vacancies, although, for the un-passivated ones, the disappearance of the π\pi magnetic moments is accompanied by a very large magnetic susceptibility. Only for the unlikely case of a full σ\sigma-bond passivation, preventing the reconstruction of the vacancy, a full value of 1μB\mu_B for the π\pi extended magnetic moment is recovered for both mono and bilayer cases. Our results put on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in graphene-based systems, while still leaving the door open to σ\sigma-type paramagnetism.Comment: Submitted to Phys. Rev B, 9 page

    Critical comparison of electrode models in density functional theory based quantum transport calculations

    Full text link
    We study the performance of two different electrode models in quantum transport calculations based on density functional theory: Parametrized Bethe lattices and quasi-one dimensional wires or nanowires. A detailed account of implementation details in both cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi one dimensional electrodes for large enough sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is case for carbon nanotubes, graphene nanoribbons or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox Alacant and are publicly available.Comment: 17 pages, 12 figure

    Emergence of half-metallicity in suspended NiO chains

    Get PDF
    Contrary to the antiferromagnetic and insulating character of bulk NiO, one-dimensional chains of this material can become half-metallic due to the lower coordination of their atoms. Here we present ab initio electronic structure and quantum transport calculations of ideal infinitely long NiO chains and of more realistic short ones suspended between Ni electrodes. While infinite chains are insulating, short suspended chains are half-metallic minority-spin conductors which display very large magnetoresistance and a spin-valve behaviour controlled by a single atom.Comment: 5 pages, 4 figures; accepted version; minor changes in introduction and reference
    corecore