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Anomalous exchange interaction between intrinsic spins in conducting graphene systems
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We address the nature and possible observable consequences of singular one-electron states that appear
when strong defects are introduced in the metallic family of graphene, namely, metallic carbon nanotubes and
nanotori. In its simplest form, after creating two defects on the same sublattice, a state may emerge at the Fermi
energy presenting very unusual properties: It is unique, normalizable, and features a wave function equally
distributed around both defects. As a result, the exchange coupling between the magnetic moments generated by
the two defects is anomalous. The intrinsic spins couple ferromagnetically, as expected, but do not present an
antiferromagnetic excited state at any distance. We propose the use of metallic carbon nanotubes as an electronic
device based on this anomalous coupling between spins which can be useful for the robust transmission of
magnetic information at large distances.
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Introduction. After almost a decade of research in graphene
and graphene-based structures [1] and more than two decades
of research in carbon nanotubes (CNTs) [2], little remains
to be known on the nature of the single-particle electronic
states of these systems. Nowadays the focus is shifting towards
defect-dependent electronic properties. For large-scale practi-
cal applications understanding the role of defects is essential
and much work has been done on the tuning of graphene
properties through functionalization [3–5] or the controlled
manipulation of defects [6–10].

Vacancies and adsorbates play a central role in this game.
Both types of defects act as a strong perturbation since both
can give rise to localized states at or near the Dirac point. The
basics of the emergence of these states lies in the bipartite
nature of the graphene lattice and simple rules [11]. For
instance, when one pz orbital is removed from the system
in an otherwise perfect lattice, a zero-energy state must appear
on the other sublattice, typically around the perturbation [12].
Whether or not this is accompanied by the emergence of
magnetism is a matter of current debate for vacancies since
the passivation and structural details become relevant [13]. In
the case of H adatoms, the situation is, however, much more
clear [14,15]. Keeping this in mind, we will generically refer
to both unreconstructed vacancies and H adatoms simply as
defects from now on.

For infinite or gapful graphene (e.g., armchair-terminated
flakes) the emergence of defect-induced “zero-energy” (or
Fermi energy) states is well understood [11,16]. However,
the question that we want to address here is, What happens
when, previously to the introduction of defects, the bulk
density of states (DOS) is already finite at zero energy? This
situation naturally occurs in metallic CNTs and nanotori with
appropriate radii (metallic nanoribbons unavoidably present a
small gap [17] and are excluded from this discussion). We will
show that while the presence of a first defect is not revealed in
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the DOS, a second one on the same sublattice may induce a
peak at the Fermi energy which corresponds to a state localized
around both defects regardless of their relative distance—thus
the term bilocal which will be used to refer to such state from
now on. The conditions for the appearance of this state in
metallic CNTs and nanotori (as the ones shown in Fig. 1)
are analyzed with a simple tight-binding model. The intrinsic
spin induced by the defects and the anomalous behavior of
its magnetic coupling is exposed through density functional
theory (DFT) calculations. A possible use of such a peculiar
electronic state for transmission of (magnetic) information
without losses at long distances is proposed. Figure 1(a)
illustrates this possibility. There a magnetic probe [e.g., a
scanning tunneling microscope (STM) magnetic tip] near a
defect on a metallic CNT is used to register changes in the local
magnetic environment at the second defect or to manipulate
the magnetic state of this, but nonlocally.

Bilocal states in carbon nanotori. Although their produc-
tion in the laboratory is rare, we start our discussion with the
help of a graphene nanotorus. A nanotorus can be seen as a
finite-length CNT with the two ends joined as to form a ringlike
structure [see Fig. 1(b)]. We first model the Hamiltonian of the
π carriers by a single first-neighbor hopping parameter t :

H = −t
∑

i,j,σ

c
†
i,σ cj,σ , (1)

where c
†
i,σ (cj,σ ) is the creation (annihilation) operator at atom

i (j ) of a π electron. We assume a value for the hopping
parameter between nearest-neighbor orbitals of t = 2.66 eV.
Neglecting curvature effects, the electronic structure of these
systems can actually be inferred from those of infinite graphene
by simply selecting the states in the first Brillouin zone that
are compatible with the periodic boundary conditions of the
nanotorus [18–20]. Depending on the nanotorus, the zero-
energy states at the Dirac points will be part of this selection or
not. In particular, a metallic CNT(n,n) with the ends connected
with a periodicity along the tube axis being proportional to 3a

(where a is the graphene lattice parameter) is a “metallic”
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FIG. 1. (Color online) Schematic views of a metallic nanotorus
(upper figure) and of our proposed experimental setup based on
a metallic nanotube with two defects and a scanning tunneling
microscopy tip.

nanotorus with zero-energy states. The tight-binding energy
spectrum obtained for a nanotorus of this kind is shown in the
upper panel of Fig. 2(a). An infinitesimal sublattice symmetry
breaking that splits the fourfold degeneracy into a pair of
twofold degenerate states with an electronic density confined
to the A or B sublattice has been added for convenience.
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FIG. 2. (Color online) (a) Electronic spectrum close to zero
energy in a CNT(6,6) nanotorus with 9 unit cells. (b) Wave functions
for one defect. (c) The same for two defects that generate a bilocal
state. The shaded panel shows this state.

We also show the low-energy spectrum [Fig. 2(a), middle
and lower panels] and associated wave functions [Figs. 2(b)
and (c)] for one and two defects on the nanotorus. When a first
defect is created, e.g., on the A sublattice, one naively expects
a zero-energy state to be created on the B sublattice [11]. This,
however, hybridizes with one of the existing A states, forming
a bonding-antibonding pair away from zero energy [see the
states at E = ±0.27 eV in middle panel of Fig. 2(a)] and
reducing the number of zero-energy states down to three.

When a second defect is added, two possible scenarios
appear, depending on their relative position. First, the pair of
defects may be positioned on the same sublattice with a relative
vector �R satisfying the natural periodicity of mixed-valley
wave functions at the Dirac point:

|�( �R)|2 = cos ( �K − �K ′) · �R + C

→ ( �K − �K ′) · �R = 2nπ, (2)

where C is a constant (this condition was already identified in
Refs. [21,22] as responsible for unusual scattering properties in
nanotubes). Figure 2(c) shows an example of this first scenario
in which the second defect does not affect the three states of the
nanotorus. Instead, it creates a new bilocal state at zero energy,
with an electronic density distributed mainly around the two
vacancies on the B sublattice [see shaded panel in Fig. 2(c)]. In
the second scenario (not shown) the second defect withdraws
one of the three zero-energy states, leaving only two of them.

We must stress the unusual nature and uniqueness of the
bilocal state. Note that linear combinations of two localized
states that are spatially far apart from each other may also
give rise to bilocal states, apparently similar to the one we
describe here. The difference lies in that these come in
bonding-antibonding pairs, which become degenerate for large
distances. Any perturbation can break the degeneracy and
localize the electronic density on either one of the original
local states. These pairs are also present in our spectrum [see
the states at E = ±0.4 eV in lower panel of Fig. 2(a)]. In
addition, they are not fully localized [notice the finite weight
in all atoms of the nanotorus shown in Fig. 2(c)]. On the
contrary, the electron wave function of the bilocal state is fully
localized and intrinsically split into two locations. Since this
state is unique, perturbations are not expected to easily change
this fact.

It is known that localized states at the Fermi level spin-split
under electron-electron interactions [23,24] and the bilocal
state is no exception. We have carried out spin-polarized DFT
calculations with the SIESTA [25] code for nanotori amenable
to present bilocal states. To avoid irrelevant curvature effects
which might interfere in the discussion we have actually
performed standard calculations [26] for a flat 3n × 3n unit cell
as the one shown in the inset of Fig. 3(a), but only using the �

point. The defects are created by adsorption of H atoms. When
the condition given by Eq. (2) is satisfied a spin density appears
around both H atoms [see Fig. 3(a)] and closely following
the density of the bilocal state shown by the tight-binding
calculations. The integrated spin density amounts to S = 1 as
dictated by Lieb’s theorem [27]. The remarkable fact here is
that an antiferromagnetic state cannot be created by reversing
the spin orientation around one H atom since the spin density
is essentially supported by the bilocal state which is unique.
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FIG. 3. (Color online) Magnetic moments per atom for ferro-
(black) and antiferromagnetic (red) states of an AA pair in a metallic
nanotorus (top) and semiconducting one (bottom). In the metallic case
there is no antiferromagnetic state. The insets show the low-energy
spectrum in the four cases, including the nonmagnetic one (blue).

One could say that the exchange coupling between the local
magnetic moments around the H atoms is infinite since any
attempt at generating an antiferromagnetic solutions ends up
with a nonmagnetic state of much higher energy (see blue
line and dots in the inset). This will likely require very large
cells and we have not been able to verify this end even for
our largest systems. All this contrasts to the finite exchange
coupling that is always obtained in infinite graphene [15] or in
gapful nanotori as shown in Fig. 3(b). Finally notice that if the
pairs of H atoms do not satisfy Eq. (2) itinerant or extended
ferromagnetism is obtained for AA pairs and a nonmagnetic
state for AB pairs.

Bilocal states in CNTs. We now examine whether or not
the bilocal states and the anomalous exchange couplings
also appear in a much more common metallic CNT(n,n).
They are in many regards similar to the previously discussed
nanotori, but with infinite circumference radius and open
boundary conditions. As before we are interested in the
electronic states that emerge after introducing two defects;
therefore the system lacks translational invariance. We use
a standard Green’s function (GF) approach to calculate the
electronic structure [28–30], more specifically the DOS and
the conductance. In regards to this, we split the system into
three parts, namely a central region containing the defects and
connected to the right and left leads. The Hamiltonian can thus
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FIG. 4. (Color online) DOS (top panel) and conductance (bottom
panel) of a CNT(6,6) with different defects configurations as
explained in the legend. The dashed lines correspond to second-
nearest-neighbor hopping for one case.

be written as

H = HC + HR + HL + hLC + hLR, (3)

where HC , HL, and HR are the Hamiltonians of the central
portion and left and right leads respectively, and hLC , hRC are
the hopping matrices from the left L and right R lead to the
central region C. The GF of the latter is

GC(E) = (E − HC − �L − �R)−1, (4)

where �� = h�Cg�h
†
�C is the self-energy due to lead � =

L,R, and g� = (E − H�)−1 is the GF of the semi-infinite lead
�. Complementary to the local DOS, the conductance can also
be computed as thoroughly described in the literature [29,31].

Figure 4 depicts the DOS and the conductance of a
CNT(6,6) in the tight-binding approximation with different
defect configurations. A single defect positioned on the A
(or B) sublattice barely shows up as a bump close to the
Fermi energy (E = 0 eV). This is analogous to the previous
discussion for the nanotorus except for the fact that now
we have a continuous DOS and it contrasts very much to
the effect of the same defect on infinite graphene where a
peak corresponding to a semilocalized state appears at the
Dirac point [12]. While the DOS does not reflect the defect,
the conductance of the nanotube drops from 2G0 to G0

(G0 = 2e2/h) [21,28]. From the nanotorus results this can
be understood as due to the complete blocking of one of the
channels since current cannot be carried by states which only
live on one sublattice.
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FIG. 5. (Color online) DOS at zero energy projected on all atoms
for a CNT(6,6) (unrolled view) with two defects positioned at a
distance of 2.15 nm (a) and 5.2 nm (b) from each other. The inset
shows the decay of the maximum LDOS around the defects as a
function of the relative distance.

When the second defect is located on the same sublattice
satisfying Eq. (2), a zero-width peak now appears at zero
energy. The associated state is fully localized and does not
hybridize with the conduction electrons as anticipated from the
nanotorus results. Notice also that, as Fig. 4 shows, changing
the distance between defects does not have a significant effect.
The zero-width peak remains located at zero energy, although
the oscillations in the DOS grow and the peaks close to zero
energy sharpen. Also as expected, defect pairs which do not
satisfy Eq. (2) do not induce a zero-energy peak. Figure 5
depicts the local DOS at E = 0 eV for the two cases. A
strongly localized density around both vacancies appears. As
expected for a zero-energy state, this wave function has zero
weight in the sublattice hosting the defects. As far as we have
been able to check, when the distance is increased the exotic
bilocal character of this wave function persists with a slowly
decreasing weight around defects [see inset in Fig. 5(a)].

One can foresee that, due to the finite DOS at the Fermi
energy, a more realistic CNT Hamiltonian, which will always
break electron-hole symmetry, may have an effect on the

localization of the bilocal state. The simplest way to do this is
by adding a second-nearest neighbor interaction (t ′ = 0.1 eV)
to our previous tight-binding calculations. In Fig. 4 we show
with dashed lines the results for the DOS and the conductance
for one of the cases. Notice that the bilocal state is still close
to the Fermi energy (which is now at E = 0.585 eV, but has
been shifted to zero for clarity) acquires a finite width which
indicates that it now couples to the continuum. Its nature,
however, remains the same. This coupling may have important
consequences since now this state can be electronically probed
in transport, as shown by the conductance peak at that energy
which restores the maximum conductance of the CNT(6,6).

In the light of so many similarities, we do not expect
significant differences in the behavior of the exchange cou-
plings between nanotubes and nanotori. We have also verified
through DFT calculations the impossibility of generating an
antiferromagnetic state out of an AA pair of defects creating
a bilocal state in the nanotube. All of this encourages us to
propose the experimental setup shown in Fig. 1. An STM
magnetic tip located near a defect can be used to detect
the appearance of a new defect at any distance from the
tip or even local changes in the magnetic environment of
this second defect. The tip could also manipulate the spin
density orientation at the second defect from the distance.
To our knowledge, this robust nonlocal transmission of
(magnetic) information is unique to these systems, opening
the possibility for a new class of carbon nanodevices where
magnetic information can be nonlocally stored. Further work
should examine this proposal for a finite concentration of
defects where multilocal instead of bilocal zero-energy states
appear.
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