3,007 research outputs found
On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides
Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are
electronically active in superconducting copper-oxides by stabilizing single
phases with enhanced , whereas other metal-oxygen complexes deteriorate
copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation
states are closed shell or inert pair ions. Their electronic
configurations have a strong tendency to polarize the oxygen environment. The
closed shell ions with low lying
excitations form linear complexes through hybridization polarizing
the apical oxygens. Comparatively low excitation energies
distinguish from other closed shell
ions deteriorating copper-oxide superconductivity, {\it e.g.} .Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc.
Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related
Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199
Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites
The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage
The Structure of Operators in Effective Particle-Conserving Models
For many-particle systems defined on lattices we investigate the global
structure of effective Hamiltonians and observables obtained by means of a
suitable basis transformation. We study transformations which lead to effective
Hamiltonians conserving the number of excitations. The same transformation must
be used to obtain effective observables. The analysis of the structure shows
that effective operators give rise to a simple and intuitive perspective on the
initial problem. The systematic calculation of n-particle irreducible
quantities becomes possible constituting a significant progress. Details how to
implement the approach perturbatively for a large class of systems are
presented.Comment: 12 pages, 1 figure, accepted by J. Phys. A: Math. Ge
Recommended from our members
Mechanisms of cognitive vulnerability to stress: synapses, Spine and a symphony of mediators
Using magnetoencephalography to investigate brain activity during high frequency deep brain stimulation in a cluster headache patient
PURPOSE: Treatment-resistant cluster headache can be successfully alleviated with deep brain stimulation (DBS) of the posterior hypothalamus [1]. Magnetoencephalography (MEG) is a non-invasive functional imaging technique with both high temporal and high spatial resolution. However, it is not known whether the inherent electromagnetic (EM) noise produced by high frequency DBS is compatible with MEG. MATERIALS AND METHODS: We used MEG to record brain activity in an asymptomatic cluster headache patient with a DBS implanted in the right posterior hypothalamus while he made small movements during periods of no stimulation, 7 Hz stimulation and 180 Hz stimulation. RESULTS: We were able to measure brain activity successfully both during low and high frequency stimulation. Analysis of the MEG recordings showed similar activation in motor areas in during the patient's movements as expected. We also observed similar activations in cortical and subcortical areas that have previously been reported to be associated with pain when the patient's stimulator was turned on or off [2,3]. CONCLUSION: These results show that MEG can be used to measure brain activity regardless of the presence of high frequency deep brain stimulation
Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory
We present a study of the free energy of parameterized Polyakov loops P in
SU(2) and SU(3) lattice gauge theory as a function of the parameters that
characterize P. We explore temperatures below and above the deconfinement
transition, and for our highest temperatures T > 5 T_c we compare the free
energy to perturbative results.Comment: Minor changes. Final version to appear in JHE
The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models
The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with
toroidal boundary conditions and an even number of sites provide a projection
mechanism yielding the spectra of models with a central charge c<1 including
the unitary and non-unitary minimal series. Taking into account the
half-integer angular momentum sectors - which correspond to chains with an odd
number of sites - in many cases leads to new spinor operators appearing in the
projected systems. These new sectors in the XXZ chain correspond to a new type
of frustration lines in the projected minimal models. The corresponding new
boundary conditions in the Hamiltonian limit are investigated for the Ising
model and the 3-state Potts model and are shown to be related to duality
transformations which are an additional symmetry at their self-dual critical
point. By different ways of projecting systems we find models with the same
central charge sharing the same operator content and modular invariant
partition function which however differ in the distribution of operators into
sectors and hence in the physical meaning of the operators involved. Related to
the projection mechanism in the continuum there are remarkable symmetry
properties of the finite XXZ chain. The observed degeneracies in the energy and
momentum spectra are shown to be the consequence of intertwining relations
involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published
back in 1993. It has been made available here because there has been recent
interest in conformal twisted boundary conditions. The "duality-twisted"
boundary conditions discussed in this paper are particular examples of such
boundary conditions for quantum spin chains, so there might be some renewed
interest in these result
A sufficient criterion for integrability of stochastic many-body dynamics and quantum spin chains
We propose a dynamical matrix product ansatz describing the stochastic
dynamics of two species of particles with excluded-volume interaction and the
quantum mechanics of the associated quantum spin chains respectively. Analyzing
consistency of the time-dependent algebra which is obtained from the action of
the corresponding Markov generator, we obtain sufficient conditions on the
hopping rates for identifing the integrable models. From the dynamical algebra
we construct the quadratic algebra of Zamolodchikov type, associativity of
which is a Yang Baxter equation. The Bethe ansatz equations for the spectra are
obtained directly from the dynamical matrix product ansatz.Comment: 19 pages Late
Characterization of the proposed 4-α cluster state candidate in O 16
The O16(α,α′) reaction was studied at θlab=0 at an incident energy of Elab=200 MeV using the K600 magnetic spectrometer at iThemba LABS. Proton decay and α decay from the natural parity states were observed in a large-acceptance silicon strip detector array at backward angles. The coincident charged-particle measurements were used to characterize the decay channels of the 06+ state in O16 located at Ex=15.097(5) MeV. This state is identified by several theoretical cluster calculations to be a good candidate for the 4-α cluster state. The results of this work suggest the presence of a previously unidentified resonance at Ex≈15 MeV that does not exhibit a 0+ character. This unresolved resonance may have contaminated previous observations of the 06+ state
Extending colonic mucosal microbiome analysis - Assessment of colonic lavage as a proxy for endoscopic colonic biopsies
This study was supported through GI Research funds and MRC Grant Ref: MR/M00533X/1 to GH.Peer reviewedPublisher PD
- …