100 research outputs found

    Decreased production of low density lipoprotein by atorvastatin after apheresis in homozygous familial hypercholesterolemia

    Get PDF
    Apheresis only partially controls raised low density lipoprotein cholesterol levels in patients with homozygous familial hypercholesterolemia, who usually respond poorly to lipid-lowering drugs. The efficacy and mechanism of action of a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, atorvastatin, was therefore investigated in seven homozygotes undergoing apheresis. One receptor-negative and six receptor-defective homozygotes undergoing plasma exchange or LDL apheresis every 2 weeks were studied during 2 months each on placebo and on atorvastatin 80 mg daily. Changes in plasma lipids and mevalonic acid, an index of cholesterol synthesis, were measured and the kinetics of the rebound of low density lipoprotein cholesterol and apolipoprotein B after apheresis were analyzed. All subjects had significant improvements on atorvastatin. Mean decreases in low density lipoprotein cholesterol were 31% greater both pre- and post-apheresis on atorvastatin compared with placebo, accompanied by a 63% decrease in mevalonic acid. Percentage changes in low density lipoprotein cholesterol and mevalonic acid were closely correlated (r = 0.89, P = 0.007). The mean production rates of low density lipoprotein cholesterol and apolipoprotein B were 21% and 25% lower, respectively, on atorvastatin than on placebo (P < 0.005 and <0.02) but changes in mean fractional clearance rates were not statistically significant. We conclude that atorvastatin enhances the efficacy of plasma exchange and low density lipoprotein apheresis in patients who lack low density lipoprotein receptors. This effect appears to be due to marked inhibition of cholesterol synthesis which results in a decreased rate of production of low density lipoprotein

    A Locked Nucleic Acid Antisense Oligonucleotide (LNA) Silences PCSK9 and Enhances LDLR Expression In Vitro and In Vivo

    Get PDF
    The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol.The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity.LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome

    Association of a sequence variant in DAB2IP with coronary heart disease

    Get PDF
    Aims: A sequence variant, rs7025486[A], in DAB2IP on chromosome 9q33 has recently been associated with coronary heart disease (CHD). We sought to replicate this finding and to investigate associations with a panel of inflammatory and haemostatic biomarkers. We also sought to examine whether this variant, in combination with a chromosome 9p21 CHD variant (rs10757278) and the Framingham risk score (FRS), could improve the prediction of events compared with the FRS alone. Methods and results: rs7025486 was genotyped in 1386 CHD cases and 3532 controls and was associated with CHD [odds ratio (OR) of 1.16, 95% confidence interval (CI) 1.05-1.29, P = 0.003]. Meta-analysis, using data from the original report and from genome-wide association studies in both the Wellcome Trust Case Control Consortium and the Cardiovascular Health Study, comprising 9968 cases and 20 048 controls, confirmed the association (OR of 1.10, 95% CI 1.06-1.14, P = 3.2 x 10 -6). There was no association with a panel of CHD biomarkers, including any lipid, inflammation, or coagulation trait, nor with telomere length. Addition to the FRS of this variant plus rs10757278 on chromosome 9p21 improved the area under the receiver-operating characteristic curve (AROC) from 0.61 to 0.64 (P = 0.03) as well as improving the reclassification (net reclassification index = 11.1%, P = 0.007). Conclusion: This study replicates a previous association of a variant in DAB2IP with CHD. Addition of multiple variants improves the performance of predictive models based upon classical cardiovascular risk factors

    An investigation of the effects of lipid-lowering medications: genome-wide linkage analysis of lipids in the HyperGEN study

    Get PDF
    BACKGROUND: Use of anti-hyperlipidemic medications compromises genetic analysis because of altered lipid profiles. We propose an empirical method to adjust lipid levels for medication effects so that the adjusted lipid values substitute the unmedicated lipid values in the genetic analysis. RESULTS: Published clinical trials were reviewed for HMG-CoA reductase inhibitors and fibric acid derivatives as mono-drug therapy. HMG-CoA reductase inhibitors showed similar effects in African Americans (AA) and non-African Americans (non-AA) for lowering total cholesterol (TC, -50.7 mg/dl), LDL cholesterol (LDL-C, -48.1 mg/dl), and triglycerides (TG, -19.7 mg/dl). Their effect on increasing HDL cholesterol (HDL-C) in AA (+0.4 mg/dl) was lower than in Non-AA (+2.3 mg/dl). The effects of fibric acid derivatives were estimated as -46.1 mg/dl for TC, -40.1 mg/dl for LDL-C, and +5.9 mg/dl for HDL-C in non-AA. The corresponding effects in AA were less extreme (-20.1 mg/dl, -11.4 mg/dl, and +3.1 mg/dl). Similar effect for TG (59.0 mg/dl) was shown in AA and non-AA. The above estimated effects were applied to a multipoint variance components linkage analysis on the lipid levels in 2,403 Whites and 2,214 AA in the HyperGEN study. The familial effects did vary depending on whether the lipids were adjusted for medication use. For example, the heritabilities increased after medication adjustment for TC and LDL-C, but did not change significantly for HDL-C and TG. CONCLUSION: Ethnicity-specific medication adjustments using our empirical method can be employed in epidemiological and genetic analysis of lipids.National Heart, Lung, and Blood Institute (HL554471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515

    Ethical preferences for influencing superiors: A 41-society study

    Get PDF
    With a 41-society sample of 9990 managers and professionals, we used hierarchical linear modeling to investigate the impact of both macro-level and micro-level predictors on subordinate influence ethics. While we found that both macro-level and micro-level predictors contributed to the model definition, we also found global agreement for a subordinate influence ethics hierarchy. Thus our findings provide evidence that developing a global model of subordinate ethics is possible, and should be based upon multiple criteria and multilevel variables

    Societal-level versus individual-level predictions of ethical behavior: a 48-society study of collectivism and individualism

    Get PDF
    Is the societal-level of analysis sufficient today to understand the values of those in the global workforce? Or are individual-level analyses more appropriate for assessing the influence of values on ethical behaviors across country workforces? Using multi-level analyses for a 48-society sample, we test the utility of both the societal-level and individual-level dimensions of collectivism and individualism values for predicting ethical behaviors of business professionals. Our values-based behavioral analysis indicates that values at the individual-level make a more significant contribution to explaining variance in ethical behaviors than do values at the societal-level. Implicitly, our findings question the soundness of using societal-level values measures. Implications for international business research are discussed

    Driving innovation through energy efficiency: A Russian regional analysis

    No full text
    Recent literature on energy efficiency focuses on the issues of energy security and options for reducing energy consumption. Measuring energy efficiency properly and forecasting future needs is critical to the energy policies of any country, especially given the importance of sustainability in their economic development. The role innovation plays in improving energy efficiency is well researched. There is a gap in examining an opposite relationship. That is, where energy efficiency becomes a critical factor for fueling innovation. This impact can occur within a company, a region, a nation or on an international level. Here we show that regions could motivate business innovations through policies requiring energy efficiency. Based on observations from a number of regions of an emerging economy, we show that energy efficiency impacts innovation. As a side effect it can contribute to export increases, which in turn can improve regional attractiveness for investors. We believe that the spiral development of the relationship between energy efficiency and innovation used as a strategy could become sustainable

    Cardiac T2* and lipid measurement at 3.0 T-initial experience.

    No full text
    This study was designed to assess whether breath-hold cardiac multiecho imaging at 3.0 T is achievable without significant image artefacts and if fat/water phase interference modulates the exponential T2* signal decay. Twelve healthy volunteers (mean age 39) were imaged on a Philips Intera 3.0 T MRI scanner. Multiecho imaging was performed with a breath-hold spoiled gradient echo sequence with a seven echo readout (echo times 1.15–8.05 ms, repetition time 11 ms) using a black-blood prepulse and volume shimming. T2* values were calculated with both mono- and biexpoential fits from the mean signal intensity of the interventricular septum. The global mean T2* was 27.3 ms ± 6.4. The mean signal-to-noise ratio (SNR) of the septum was 22.8 ± 9.9, and the contrast-to-noise ratio (CNR) of the septum to the left ventricular cavity 20.3 ± 9.4. A better fit was obtained with a biexponential model and the mean fat fraction derived was 3.7%. Cardiac functional parameters were in the normal range and showed no correlation with T2*. Cardiac T2* estimation with gradient multiecho imaging at 3.0 T can be achieved with minimal artefact and modelling the signal decay with a biexponential function allows estimation of myocardial lipid content as well as T2* decay
    corecore