56 research outputs found
Genetic profile of African swine fever virus responsible for the 2019 outbreak in northern Malawi
Background African swine fever (ASF) is an infectious transboundary animal disease which causes high mortality, approaching 100% in domestic pigs and it is currently considered as the most serious constraint to domestic pig industry and food security globally. Despite regular ASF outbreaks within Malawi, few studies have genetically characterized the causative ASF virus (ASFV). This study aimed at genetic characterization of ASFV responsible for the 2019 outbreak in northern Malawi. The disease confirmation was done by polymerase chain reaction (PCR) followed by molecular characterization of the causative ASFV by partial genome sequencing and phylogenetic reconstruction of theB646L(p72) gene, nucleotide alignment of the intergenic region (IGR) betweenI73RandI329Lgenes and translation of the central variable region (CVR) coded byB602Lgene. Results All thirteen samples collected during this study in Karonga district in September 2019 were ASFV-positive and after partial genome sequencing and phylogenetic reconstruction of theB646L(p72) gene, the viruses clustered into ASFV p72 genotype II. The viruses characterized in this study lacked a GAATATATAG fragment between theI173Rand theI329Lgenes and were classified as IGR I variants. Furthermore, the tetrameric amino acid repeats within the CVR of theB602Lgene of the 2019 Malawian ASFV reported in this study had the signature BNDBNDBNAA, 100% similar to ASFV responsible for the 2013 and 2017 ASF outbreaks in Zambia and Tanzania, respectively. Conclusions The results of this study confirm an ASF outbreak in Karonga district in northern Malawi in September 2019. The virus was closely related to other p72 genotype II ASFV that caused outbreaks in neighboring eastern and southern African countries, emphasizing the possible regional transboundary transmission of this ASFV genotype. These findings call for a concerted regional and international effort to control the spread of ASF in order to improve nutritional and food security
Community mobilization for malaria elimination: application of an open space methodology in Ruhuha sector, Rwanda
Background Despite the significant reduction of malaria transmission in Rwanda, Ruhuha sector is still a highly endemic area for malaria. The objective of this activity was to explore and brainstorm the potential roles of various community stakeholders in malaria elimination. Methods Horizontal participatory approaches such as ‘open space’ have been deployed to explore local priorities, stimulate community contribution to project planning, and to promote local capacity to manage programmes. Two open space meetings were conducted with 62 and 82 participants in years 1 and 2, respectively. Participants included purposively selected community and local organizations’ representatives. Results Malaria was perceived as a health concern by the respondents despite the reported reduction in prevalence from 60 to 20% for cases at the local health centre. Some misconceptions of the cause of malaria and misuse of preventive strategies were noted. Poverty was deemed to be a contributing factor to malaria transmission, with suggestions that improvement of living conditions for poor families might help malaria reduction. Participants expressed willingness to contribute to malaria elimination and underscored the need for constant education, sensitization and mobilization towards malaria control in general. Active diagnosis, preventative strategies and prompt treatment of malaria cases were all mentioned by participants as ways to reduce malaria. Participants suggested that partnership of stakeholders at various levels could speed up programme activities. A community rewards system was deemed important to motivate engaged participants, i.e., community health workers and households. Establishment of malaria clubs in schools settings was also suggested as crucial to speed up community awareness and increase skills towards further malaria reduction. Conclusions This bottom-up approach was found useful in engaging the local community, enabling them to explore issues related to malaria in the area and suggest solutions for sustainable malaria elimination gains
Predicting range shifts of African apes under global change scenarios
Aim:
Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap.
Location:
Tropical Africa.
Methods:
We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting.
Results
The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap.
Main Conclusions:
Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad
High aboveground carbon stock of African tropical montane forests
Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems
ВЭБ-мононуклеоз у детей в современных условиях
EBV-mononucleosis is a widespread infectious disease, and also it is an urgent problem of the whole world. The purpose of the research was to study the clinical and laboratory features of EBV-mononucleosis in hospitalized children of different ages in modern conditions. Under the supervision were 136 children aged from 1 year to 18 years. All of the patients had typical and mainly (85%) moderate form of the disease, and 15% of them patients had a severe form of the disease. The results: more severe fever and lymphadenopathy were observed in children older than 3 years. Acute tonsillitis was present in all hospitalized children. Adenoiditis and hepatosplenomegaly were greater in the group of patients of a younger age. Hyperfermentemia was determined in more than half of patients, more often in children over 12 years old. In the hemogram leukocytosis and monocytosis were mostly noted. Atypical blood mononuclear cells were detected in 89% of patients. Patients got complex etiopathogenetic therapy.ВЭБ-мононуклеоз является широко распространенным инфекционным заболеванием, а так же актуальной проблемой во всем мире. Цель исследования — изучить клинико-лабораторные особенности ВЭБ-мононуклеоза у госпитализированных детей различного возраста в современных условиях. Под наблюдением находились 136 детей в возрасте от 1 г. до 18 лет. У всех больных диагностирована типичная, преимущественно (85%) среднетяжелая форма заболевания, у 15% пациентов выявлена тяжелая степень болезни. Результаты: более выраженный синдром лихорадки и лимфаденопатии наблюдались у детей в возрасте старше 3 лет. Острый тонзиллит присутствовал у всех госпитализированных. Аденоидит и гепатоспленомегалия были более выраженными у пациентов младшей возрастной группы. Гиперферментемия определялась более чем у половины пациентов, чаще у детей в возрасте старше 12 лет. В гемограмме чаще всего отмечались: лейкоцитоз и моноцитоз. Атипичные мононуклеары в крови были выявлены у 89% пациентов. Пациенты получали комплексную этиопатогенетическую терапию
ЭТИОТРОПНАЯ ТЕРАПИЯ ОСТРЫХ РЕСПИРАТОРНЫХ ВИРУСНЫХ ИНФЕКЦИЙ СО СТЕНОЗИРУЮЩИМИ ЛАРИНГОТРАХЕИТАМИ
Clinical-laboratory analysis of the effectiveness of VIFERON® (suppositories rectal) in children from 1 month up to 7 years with acute respiratory viral infections (ARVI), accompanied by acute stenosing laryngotracheitis (ASLT), hospitalized in Children's City Clinical Hospital №5 named after N.F. Filatov. We have found that the drug VIFERON® helps statistically significant reduction in the duration of all major clinical manifestations of the disease as a whole, and also reduces the severity and duration of clinical symptoms ASLT, and significantly contributes to the faster elimination of viral antigens.Проведен клиническо-лабораторный анализ эффективности препарата ВИФЕРОН® (суппозитории ректальные) у детей в возрасте от 1 мес. до 7 лет с острыми респираторными вирусными инфекциями (ОРВИ), сопровождающимися острым стенозирующим ларинготрахеитом (ОСЛТ), госпитализированных в ДГКБ №5 им. Филатова. Нами установлено, что препарат ВИФЕРОН® способствует статистически значимому сокращению продолжительности основных клинических проявлений заболевания, уменьшает выраженность и продолжительность клинических симптомов ОСЛТ, способствует более быстрой элиминации вирусных антигенов
Predicting range shifts of African apes under global change scenarios
Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results: The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa\u27s current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad
Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in sub-Saharan Africa
Background Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. Methods Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. Conclusions Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact
Predicting range shifts of African apes under global change scenarios
Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results: The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad
- …