1,296 research outputs found

    Event-based relaxation of continuous disordered systems

    Full text link
    A computational approach is presented to obtain energy-minimized structures in glassy materials. This approach, the activation-relaxation technique (ART), achieves its efficiency by focusing on significant changes in the microscopic structure (events). The application of ART is illustrated with two examples: the structure of amorphous silicon, and the structure of Ni80P20, a metallic glass.Comment: 4 pages, revtex, epsf.sty, 3 figure

    Multicentre cohort study to define and validate pathological assessment of response to neoadjuvant therapy in oesophagogastric adenocarcinoma.

    Get PDF
    BACKGROUND: This multicentre cohort study sought to define a robust pathological indicator of clinically meaningful response to neoadjuvant chemotherapy in oesophageal adenocarcinoma. METHODS: A questionnaire was distributed to 11 UK upper gastrointestinal cancer centres to determine the use of assessment of response to neoadjuvant chemotherapy. Records of consecutive patients undergoing oesophagogastric resection at seven centres between January 2000 and December 2013 were reviewed. Pathological response to neoadjuvant chemotherapy was assessed using the Mandard Tumour Regression Grade (TRG) and lymph node downstaging. RESULTS: TRG (8 of 11 centres) was the most widely used system to assess response to neoadjuvant chemotherapy, but there was discordance on how it was used in practice. Of 1392 patients, 1293 had TRG assessment; data were available for clinical and pathological nodal status (cN and pN) in 981 patients, and TRG, cN and pN in 885. There was a significant difference in survival between responders (TRG 1-2; median overall survival (OS) not reached) and non-responders (TRG 3-5; median OS 2Β·22 (95 per cent c.i. 1Β·94 to 2Β·51) years; P < 0Β·001); the hazard ratio was 2Β·46 (95 per cent c.i. 1Β·22 to 4Β·95; P = 0Β·012). Among local non-responders, the presence of lymph node downstaging was associated with significantly improved OS compared with that of patients without lymph node downstaging (median OS not reached versus 1Β·92 (1Β·68 to 2Β·16) years; P < 0Β·001). CONCLUSION: A clinically meaningful local response to neoadjuvant chemotherapy was restricted to the small minority of patients (14Β·8 per cent) with TRG 1-2. Among local non-responders, a subset of patients (21Β·3 per cent) derived benefit from neoadjuvant chemotherapy by lymph node downstaging and their survival mirrored that of local responders

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    On the behaviour of lung tissue under tension and compression

    Get PDF
    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 minβˆ’1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response

    Evolving Gaussian Process Kernels for Translation Editing Effort Estimation

    Get PDF
    In many Natural Language Processing problems the combination of machine learning and optimization techniques is essential. One of these problems is estimating the effort required to improve, under direct human supervision, a text that has been translated using a machine translation method. Recent developments in this area have shown that Gaussian Processes can be accurate for post-editing effort prediction. However, the Gaussian Process kernel has to be chosen in advance, and this choice in- fluences the quality of the prediction. In this paper, we propose a Genetic Programming algorithm to evolve kernels for Gaussian Processes. We show that the combination of evolutionary optimization and Gaussian Processes removes the need for a-priori specification of the kernel choice, and achieves predictions that, in many cases, outperform those obtained with fixed kernels.TIN2016-78365-

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb

    Non-homologous end-joining pathway associated with occurrence of myocardial infarction: gene set analysis of genome-wide association study data

    Get PDF
    &lt;p&gt;Purpose: DNA repair deficiencies have been postulated to play a role in the development and progression of cardiovascular disease (CVD). The hypothesis is that DNA damage accumulating with age may induce cell death, which promotes formation of unstable plaques. Defects in DNA repair mechanisms may therefore increase the risk of CVD events. We examined whether the joints effect of common genetic variants in 5 DNA repair pathways may influence the risk of CVD events.&lt;/p&gt; &lt;p&gt;Methods: The PLINK set-based test was used to examine the association to myocardial infarction (MI) of the DNA repair pathway in GWAS data of 866 subjects of the GENetic DEterminants of Restenosis (GENDER) study and 5,244 subjects of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study. We included the main DNA repair pathways (base excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining (NHEJ)) in the analysis.&lt;/p&gt; &lt;p&gt;Results: The NHEJ pathway was associated with the occurrence of MI in both GENDER (P = 0.0083) and PROSPER (P = 0.014). This association was mainly driven by genetic variation in the MRE11A gene (PGENDER = 0.0001 and PPROSPER = 0.002). The homologous recombination pathway was associated with MI in GENDER only (P = 0.011), for the other pathways no associations were observed.&lt;/p&gt; &lt;p&gt;Conclusion: This is the first study analyzing the joint effect of common genetic variation in DNA repair pathways and the risk of CVD events, demonstrating an association between the NHEJ pathway and MI in 2 different cohorts.&lt;/p&gt

    Buber, educational technology, and the expansion of dialogic space

    Get PDF
    Buber’s distinction between the β€˜I-It’ mode and the β€˜I-Thou’ mode is seminal for dialogic education. While Buber introduces the idea of dialogic space, an idea which has proved useful for the analysis of dialogic education with technology, his account fails to engage adequately with the role of technology. This paper offers an introduction to the significance of the I-It/I-Thou duality of technology in relation to opening dialogic space. This is followed by a short schematic history of educational technology which reveals the role technology plays, not only in opening dialogic space, but also in expanding dialogic space. The expansion of dialogic space is an expansion of what it means to be β€˜us’ as dialogic engagement facilitates the incorporation, into our shared sense of identity, of aspects of reality that are initially experienced as alien or β€˜other’. Augmenting Buber with an alternative understanding of dialogic space enables us to see how dialogue mediated by technology, as well as dialogue with monologised fragments of technology (robots), can, through education, lead to an expansion of what it means to be human

    Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention

    Get PDF
    Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter
    • …
    corecore