
Evolving Gaussian Process kernels for translation
editing e↵ort estimation

Ibai Roman
1
, Roberto Santana

1
, Alexander Mendiburu

1
, and Jose

A. Lozano
1,2

1
University of the Basque Country (UPV/EHU), San Sebastian,

Spain, {ibai.roman, roberto.santana, alexander.mendiburu,

ja.lozano}@ehu.eus
2
Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

Abstract

In many Natural Language Processing problems the combination of
machine learning and optimization techniques is essential. One of these
problems is estimating the e↵ort required to improve, under direct human
supervision, a text that has been translated using a machine translation
method. Recent developments in this area have shown that Gaussian
Processes can be accurate for post-editing e↵ort prediction. However, the
Gaussian Process kernel has to be chosen in advance, and this choice in-
fluences the quality of the prediction. In this paper, we propose a Genetic
Programming algorithm to evolve kernels for Gaussian Processes. We
show that the combination of evolutionary optimization and Gaussian
Processes removes the need for a-priori specification of the kernel choice,
and achieves predictions that, in many cases, outperform those obtained
with fixed kernels.

Keywords— Evolutionary search, Gaussian Processes, Genetic Pro-
gramming, Kernel Selection, Quality Estimation

1 Introduction

Gaussian Processes (GP) [30] have been extensively applied for function approx-
imation. A GP is a model that lies on strong Bayesian inference foundations
and can be updated when new evidence is available. In comparison to other
regression methods, a GP provides not only a prediction of a given function
but also estimates the uncertainty of the predictions. A GP requires a kernel
function to be defined and adjusts its hyperparameters to the data. Usually, the
kernel function is specified a-priori, and the search for the hyperparameters is
posed as an optimization process. This optimization is an essential component
of a GP model since it highly influences the quality of the approximation.

1

Within Natural Language Processing (NLP) literature, GPs have been ap-
plied for text classification [27], modeling periodic distributions of words over
time [29], emotion or sentiment classification [1] and Quality Estimation (QE)
[6, 34]. In these works, the choice of the GP kernel is made a-priori. For instance,
for QE regression the most common kernel is the Squared Exponential (SE) or
Radial Basis Function (RBF) kernel [6, 34]. For modeling text periodicities, the
periodic (PER) and the Periodic Spikes (PS) kernels have been proposed as a
sensible way to capture the periodicities of the function [29]. In addition to SE,
two Matern kernels, Matern 32 (M32) and Matern 52 (M52), were evaluated in
[1] for emotion analysis. There is a repertoire of kernel functions available in the
literature [30, 10, 14], and selecting the best kernel for each problem requires
an expert knowledge of the domain.

In this paper we propose to simultaneously optimize the kernel function
itself, along with its hyperparameters. For this purpose, we propose the use
of Genetic Programming (GenProg) [19]. In this work, kernels are encoded as
a set of genes and optimized though an evolutionary process. As opposed to
other proposals in the GP literature, we learn the initial kernels from scratch,
without seeding human-designed kernels, allowing us to derive kernels that are
not constrained by the prior knowledge while at the same time being optimized
for the desired objective.

We focus on a practical NLP regression problem that is related to automatic
translation of texts. In this domain, post-editing work is frequently required,
and an estimation of the cost of the editing process (in terms of time, e↵ort,
and editing distance) is essential. In [36], Specia investigated the question of
translation QE from di↵erent perspectives. In particular, a number of met-
rics describing translation quality were proposed and Support Vector Machine
(SVM) regression models [39] were used to predict them from a set of pre-defined
features.

Instead of manually defining the features, our approach relies on sentence
embeddings, vector representations of the source and the automatically trans-
lated texts to predict the post-editing e↵ort that leads to the final text. This
allows a fully automated approach, where there is no need to to extract the
features from the sentences, nor learn the kernel function. We investigate sev-
eral methods to construct the sentence embeddings along with the evolution
of the GP kernels, measuring the joint e↵ect that these questions have in QE
performance.

The remainder of the paper is organized as follows: The next section in-
troduces the main concepts related to GP regression. Section 3 presents the
addressed problem in the context of QA. The GenProg approach to evolve ker-
nel functions is presented in Section 4 and a review on related work is provided.
We describe the experimental framework used to validate our algorithm, along
with the numerical results in Section 5. The conclusions of the paper and dis-
cussion of future work are presented in Section 6.

2

2 Gaussian Process Regression

A GP is a stochastic process, defined by a collection of random variables, any
finite number of which have a joint Gaussian distribution [30]. A GP can be
interpreted as a distribution over functions, and each sample of a GP as a
function.

GPs can be completely defined by a mean function m(x) and a covariance
function, which depends on a kernel k(x,x0). Given that, a GP can be expressed
as follows:

f(x) ⇠ GP (m(x), k(x,x0)) (1)

where we assume that x 2 Rd. We also consider an a-priori equal-to-zero mean
function (m(x) = 0) to focus on the kernel search problem.

A GP can be used for regression by obtaining its posterior distribution given
some (training) data. The joint distribution between the training outputs f =
(f1, f2, ..., fn) (where fi 2 R, i 2 {1, ..., n} and n 2 N) and the test outputs
f⇤ = (fn+1, fn+2, ..., fn+n⇤) is given by:

f
f⇤

�
⇠ N

✓
0,

K(X,X) K(X,X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
(2)

where N(µ,⌃) is a multivariate Gaussian distribution, X = (x1,x2, ...,xn) (xi 2
Rd, i 2 {1, ..., n} and n 2 N) corresponds to the training inputs and X⇤ =
(xn+1, ...,xn+n⇤) to the test inputs. K(X,X⇤) denotes the n⇥n⇤ matrix of the
covariances evaluated for all the (X,X⇤) pairs.

The predictive Gaussian distribution can be found by obtaining the condi-
tional distribution given the training data and the test inputs:

f⇤|X⇤, X, f ⇠ N (M̂(X⇤), K̂(X⇤, X⇤))

M̂(X⇤) = K(X⇤, X)K(X,X)�1f

K̂(X⇤, X⇤) = K(X⇤, X⇤)�K(X⇤, X)K(X,X)�1
K(X,X⇤)

(3)

2.1 Kernel functions

GP models use a kernel to define the covariance between any two function values
[10]:

cov (f(x), f(x0)) = k(x,x0) (4)

The kernel functions used in GPs are positive-definite kernels. According to
Mercer’s Theorem [23], any PSD kernel can be represented as an inner product
in some Hilbert Space.

The best known kernels in GP literature are translation invariant, often
referred to as stationary kernels. Among them, we focus on isotropic kernels,
where the covariance function depends on the norm:

k(x,x0) = k̂(r) where r =
1

✓l
kx� x0k (5)

3

where ✓l is the length scale hyperparameter and k̂ a function that guarantees
that the kernel is PSD.

Table 1 shows four well-known kernels that have been previously applied to
NLP applications [1, 36, 29]. The SE kernel, described as kSE in the table, is
known to capture the smoothness property of the objective functions. Matern
class kernels, are denoted as k̂M32 and k̂M52 in the table, while the Periodic
kernel is shown as k̂PER.

Kernel function expressions

Squared Exp. k̂SE(r) = ✓
2
0 exp

�
� 1

2r
2
�

Matern 32 k̂M32(r) = ✓
2
0

�
1 +

p
3r
�
exp

�
�
p
3r
�

Matern 52 k̂M52(r) = ✓
2
0

�
1 +

p
5r + 5

3r
2
�
exp

�
�
p
5r
�

Periodic k̂PER(r) = ✓
2
0 exp

⇣
� 2 sin2(⇡r)

✓2
p

⌘

Table 1: Well-known kernel functions. ✓0 and ✓p are the kernel hyperparameters
called amplitude and period respectively.

2.2 Hyperparameter Optimization

The choice of the kernel function and its hyperparameters has a critical influence
on the behavior of the model, and it is crucial to achieve good results in NLP
applications of GPs [1]. This selection has been usually made by choosing one
kernel a-priori, and then adjusting the hyperparameters of the kernel function
so to optimize a given metric for the data. The most common approach is to
find the hyperparameter set that maximizes the log marginal likelihood (LML):

log p (f |X,✓,K) = �1

2
fTK(X,X)�1f � 1

2
log |K(X,X)|� n

2
log 2⇡ (6)

where ✓ is the set of hyperparameters of the kernel and n is the length of X.

3 Quality estimation and feature extraction

Following [36], we use three di↵erent metrics for QE. We assume the existence of
an original text in the source language which is divided into sentences. For each
sentence, an automatic translation to the target language is available. These
translations are the subject of post-editing work. The metrics considered are,
post-editing e↵ort, Human Translation Edit Rate (HTER) and post-edit time.

In [36], translators were asked to post-edit each sentence and score the post-
editing e↵ort according to the following options:

1. Requires complete retranslation.

2. Requires some retranslation, but post-editing is still quicker than retrans-
lation.

4

3. Very little post-editing needed.

4. Fit for purpose.

Another metric used to evaluate the translation quality is the edit distance
between the automatic translation and its post-edited version. This is computed
using the Human Translation Edit Rate (HTER) [35]. HTER is defined as
HTER = e

pew
, where e is the number of edits, which can be standard insertion,

deletion and substitution of single words, and shifting of word sequences. pew

is the number of words in the sentence.
Finally, the post-edit time was computed in [36] using the average number of

seconds required by two translators to post-edit each word in the sentence. It
is the number of seconds to post-edit the sentence, normalized by the number
of words in that sentence.

For more details on the ways these metrics were defined, [36] can be con-
sulted.

3.1 Sentence embeddings

There are a number of approaches to extract relevant information for QE [4].
In this domain, feature engineering to obtain informative features can be very
labor-intensive [37]. In [36], 80 shallow and machine-translation independent
features were extracted from the source sentences, their corresponding transla-
tions, and monolingual and parallel corpora. A selected set of these features,
comprising only 17 features, is used in [37]. Syntactic information represented
in tree fragments that contain complete grammar rules are used as feature rep-
resentation in [2].

Here, we focus on sentence embeddings [24], a common text representation
for NLP tasks, although less investigated for QE. We use word embedding dic-
tionaries for the source and target languages (before post-edition). For each
sentence, in each language, we compute the embedding representation of all the
words. Words missing in the dictionary are assigned a zero-vector representa-
tion. In each corpus, for each sentence, a function that combines the embedding
representations of all the words in a single vector (e.g., mean of the word vec-
tors) is computed to generate the sentence embedding. Finally, for each pair of
original and translated sentences, their sentence embeddings are concatenated
to produce the vector representation that is used for QE.

We examine two questions related to the embedding representation. The
embedding dimension and the way sentence embeddings are computed. In ad-
dition to the commonly applied mean function, which computes the mean of
all word embeddings in a sentence, we use another two other functions: the
maximum (max) of all word embeddings (maximum value of each embedding
component across all word embeddings), and the standard deviation (std) of
word embeddings. We hypothesize that variations in the words as captured by
the maximum and standard deviation may provide a clue as to the di�culty of
the translation.

5

4 Kernel function search

In this work, we automatically search for new kernel functions in order to better
predict the translation e↵ort. Specifically, our goal is to find the optimal k̂(r)
as in Equation (5).

To guide this search, we propose using Genetic Programming (GenProg)
[19]. In GenProg, computer programs are encoded as solutions using an evolv-
able representation. At each iteration, solutions are recombined and selected
according to the program performance, until an optimal solution is found or a
stop criterion is satisfied. In our case, the GP kernel function is the program
that is encoded into an expression tree and its performance is evaluated in the
context of the translation quality evaluation task.

We define a strongly-typed grammar [25] that specifies the possible combi-
nations these kernels can be composed of, by breaking down the mathematical
expressions present in the well-known kernels of Table 1 into basic operations
(multiplication, square root, ...).

To randomly generate kernel expression trees that conform the initial pop-
ulation, we propose a grow method based on the work done in [19]. The initial
expression tress are created by a recursive process where, at each step, a random
terminal or operator is added.

GenProg also needs perturbation or variation methods to be defined in order
to modify previous solutions to obtain new ones. A crossover operator, which
combines two kernel functions to generate a new one that keeps some of the
features of its parents, and a mutation operator, which introduces slight modi-
fications to the original kernel to obtain a new individual are used. We propose
a crossover operator that randomly selects a subtree from each kernel and com-
bines them with the sum or the product operator. Furthermore, the mutation
operator replaces, shrinks or inserts an elementary mathematical expression at
a random position in the tree in a type-safe manner.

As in [11], we use the Bayesian Information Criterion (BIC) [32] as a quality
metric for each kernel. This is the fitness function of our GenProg algorithm.
As can be seen in Equation (7), this metric is similar to the LML, but a regu-
larization term that penalizes the complexity of the kernels is added:

BIC(ki) = �2 log p (f |X, ki,✓i,best) + q log n (7)

where q is the number of hyperparameters of the kernel and n is the number
of data points in X. ✓i,best is the best hyperparameter set for the kernel ki
according to a given metric.

In contrast to other GenProg applications, the solutions in our approach do
not encode all the necessary information to be evaluated. The optimal values
of the hyperparameters, according to the LML, have to be determined. Thus,
the performance of the solutions depends on the results of the hyperparameter
optimization. Both search procedures, the selection of the best hyperparameters
for each kernel and the selection of the best kernel given these hyperparameters,
are illustrated in Figure 1.

6

θi,best=argmaxj LML(ki, Dtr, θi,j)

kbest=argmaxi BIC(ki, Dtr, θi,best)

Figure 1: Two nested search procedures: The selection of the best hyperparam-
eters for each kernel is made according to LML and the selection of the best
kernel according to the BIC.

In this paper, the hyperparameters are optimized by means of Powell ’s local
search algorithm [28]. As this algorithm is not bounded, the search space has to
be constrained by penalizing non-feasible hyperparameter sets. Besides, as the
function to optimize might be multi-modal, a multi-start approach was used,
performing a random restart every time the stopping criteria of Powell ’s algo-
rithm are met, and getting the best overall result. During this hyperparameter
search, a maximum number of 150 evaluations of the LML were allowed.

Note that, as a result of the inclusion of the randomized restarts, the hyper-
parameters found for a certain kernel in two independent evaluations may not
be the same. In fact, this implies that the fitness function optimized by the GP
algorithm is stochastic.

4.1 Related work

GPs are particularly suited to model uncertainty in the predictions and allow
accurate prediction under noisy conditions. As such, there are diverse scenarios
in which GP can be applied to NLP tasks [5]. In [34], they are used for feature
selection for QE. Another property of GP, the possibility of extending them to
model correlated tasks using multi-task kernels, is used in [6] to jointly learn a
series of annotator and metadata specific models.

The most frequently used kernel for NLP tasks is the SE kernel. However,
other kernels have shown a better performance than SE in specific tasks. In
[29], frequencies of tweets are modeled using GP kernels specifically suited to
capture periodicities. In the same paper, the PER and the PS kernels are shown
to outperform non-periodic kernels and capture di↵erent periodic patterns. In
[1], three di↵erent kernels are compared: the SE and two Matern kernels. The
Matern kernels are reported to produce better results than SE. In addition to
numerical kernels, structural-kernels (e.g., tree-kernels) have been also combined
with GP. In [2], they are applied to emotion analysis and quality estimation.

A common characteristic of GP applications to NLP is that the choice of
the GP kernel has to be made a-priori and does not depend on the quality of
the function approximation. The focus is placed on hyperparameter optimiza-
tion. However, research on evolutionary algorithms has shown that it is also
possible to explore the space of kernel functions beyond the hyperparameter

7

optimization. In the GP literature this has been done by combining known
kernels [20, 11, 22]. Kernels have also been evolved for Support Vector Ma-
chines (SVMs) [17, 13, 8, 38, 9, 18] and Relevance Vector Machines (RVMs)
[3]. Some of the SVM approaches are also based on combining the well-known
kernels [38, 9], although in some other works the kernels are learned from simple
mathematical expressions [17, 13, 8, 18].

In contrast to other works in the GP field, our approach is to evolve kernels
from scratch. This method does not rely on previously proposed kernels, and
thus, new kernels may naturally arise.

Word embeddings [24] are extensively applied to NLP tasks [21]. The usual
approach when combining embeddings from words in a sentence is to compute
the average. This is the procedure used in [1], where 100-dimensional Glove
embeddings [26] are the representation of choice for mapping texts to emotion
scores using GP regression. Word-embeddings have been also used together
with GenProg in [31], but with the goal of solving the analogy task problem.
This is a completely di↵erent problem and the solution presented in [31] does
not consider the optimization of GPs or kernels.

5 Experiments

The objectives of the experimentation are twofold. On the one hand, we would
like to know if the evolution of GP kernels can improve the results of well-known
stationary kernels in translation post-editing e↵ort estimation though sentence
embeddings. On the other hand, we would also like to investigate the best
solution to aggregate the word vectors to conform these sentence embeddings.

5.1 Datasets and embeddings

Our experiments consist of learning a GP regressor based on some combination
of source and target embeddings, and use this combined representation to pre-
dict a particular metric. To carry out these experiment, we use the datasets
originally proposed in [36]:

1. en-es news-test2010: First 1000 English news sentences and their trans-
lations into Spanish using Moses software. 800 sentences were used for
training and 200 for testing.

2. fr-en news-test2009: 2525 French news sentences and their Moses transla-
tions into English. 800 sentences were used for training and the remaining
ones for testing.

Punctuations were removed from the sentences, the text was tokenized, and
also case ignored. For the “HTER” metric, an equal cost was used for all edits
[36].

For each source language, we created two embedding representations with
di↵erent vector dimensions. For the first dataset, we use English Glove em-
beddings [26] of dimensions 50 and 300. To represent sentences in the target

8

language, we used Spanish embeddings of size 100 computed from the Spanish
CoNLL17 corpus and available from the NLPL word embeddings repository1.
For the second dataset, we used French embeddings of sizes 300 and 52. The
300-dimensional embeddings2 were trained on Common Crawl and Wikipedia
using fastText [15]. The 52-dimensional embeddings3 were trained on tweets [7].
The 100-dimensional embeddings for the target language were those provided
by Glove.

5.2 Experimental set-up

Learning a GP regressor implies optimizing the hyperparameters of the ker-
nel. Since the local optimizer used for that optimization is a stochastic process,
we run 30 executions of the fitting process using the training data. For tradi-
tional Gaussian kernels, this amounts to learning 30 di↵erent hyperparameter
configurations of the same kernel (e.g., of SE). For the evolved kernels, this
means obtaining 30 di↵erent kernels. Each regressor is then used to predict
the corresponding metric on test data. Finally, for each kernel, the quality of
the prediction is measured by computing the root mean squared error (RMSE)
between the known true metric values and the predictions. In order to com-
pare the di↵erent variants of the algorithms, we analyze the distribution of the
RMSE and the mean RMSE values.

5.3 Results

In our first experiment, we compare the classical kernel models to the evolved
kernels introduced in this paper. We also evaluate the e↵ect of using embeddings
of di↵erent dimensions to represent the source language text. Figure 2 shows the
results. In the figure, orig vw len refers to the dimensions of the embeddings
of the source data.

The first remarkable fact in Figure 2 is that GenProg kernels show a similar
variance comparing to the classical kernels. This can be a sign of convergence
at least in performance. On the other hand, it can be seen that the dimension
of the source embeddings has a higher e↵ect in the quality of the predictions
than the type of kernel used. This is particularly evident for the fr-en news-

test2009 dataset for which all distribution shapes are clearly asymmetric, with
embeddings of size 52 producing lower errors. It is important to take into
consideration that, for this dataset, embeddings are di↵erent not only in terms
of dimension but they also have been actually produced using di↵erent corpora
and methods. This is not the case for en-es news-test2010 dataset that uses 50-
and 300-dimensional Glove embeddings. This fact may explain why di↵erences
for this dataset, particularly for the “time” and “HTER” metrics, are so small.

In terms of the class of kernels used, di↵erences are only visible for the fr-

en news-test2009 and the “score” metric, for which the use of evolved kernels

1http://vectors.nlpl.eu/repository/
2https://fasttext.cc/docs/en/crawl-vectors.html
3https://www.spinningbytes.com/resources/wordembeddings/

9

(a) score in en-es (b) time in en-es (c) HTER in en-es

(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Figure 2: Comparison of the kernel models. For all kernels, the mean sentence
embedding has been used.

Matern 32 Matern 52 SE GenProg

en-es 50 300 50 300 50 300 50 300
score 0.5686 0.5655 0.5731 0.5705 0.5742 0.5678 0.5679 0.5609
time 106.3459 105.5226 106.1876 105.3945 106.4699 105.4241 106.6932 105.4191

HTER 0.1851 0.1827 0.1857 0.1830 0.1872 0.1837 0.1846 0.1835

fr-en 52 300 52 300 52 300 52 300
score 0.6703 0.6755 0.6741 0.6786 0.6758 0.6834 0.6638 0.6748
time 21.7082 22.1893 21.8140 22.2194 21.9587 22.8207 21.4360 22.0969

HTER 0.1686 0.1708 0.1691 0.1710 0.1687 0.1714 0.1684 0.1706

Table 2: Comparison between the GP models (mean RMSE from 30 executions).
The best results are shown in bold.

produces better predictions with a higher probability. The improvement over
the Matern 52 and SE kernels is particularly clear. The results of the second
experiment are summarized in Table 2.

We conducted a statistical test to assess the existence of significant di↵er-
ences among the kernels. For each dataset and metric, we applied Friedman’s
test [12] and we found significant di↵erences in most comparisons (p-values can
be seen in the figures). Then, for each configuration, we applied a post-hoc test
based on Friedman’s test, and adjusted its results with Sha↵er’s correction [33].

The results of the statistical tests are shown in Figure 3. The results con-
firm a coherent pattern where GenProg is the best performing kernel for most
of the configurations. Particularly, in fr-en news-test2009 dataset, it achieves
significantly better results that the classical kernels for the “time” metric. How-
ever, according to this test, it can also be appreciated that for the rest of the
configurations the di↵erences between GenProg and M32 are not significant. In

10

evaluating these results it is important to take into account that the kernels
produced by GenProg have been generated completely from scratch, with no
prior knowledge of the existing kernels. The algorithm is able evolve a well
performing kernel starting from elementary mathematical components.

1 2 3 4

GenProg

M32

M52

SE

p
−

va
lu

e
:

6
.7

9
e

−
0

8

score

(a) score in en-es

2 3

M52

M32

SE

GenProg

p
−

va
lu

e
:

5
.3

2
e

−
0

2

time

(b) time in en-es

2 3 4

GenProg

M32

M52

SE

p
−

va
lu

e
:

3
.1

5
e

−
0

5

hter

(c) HTER in en-es

1 2 3 4

GenProg

M32

M52

SE

p
−

va
lu

e
:

3
.8

1
e

−
1

4

score

(d) score in fr-en

1 2 3 4

GenProg

M32

M52

SE

p
−

va
lu

e
:

3
.3

1
e

−
0

9

time

(e) time in fr-en

1 2 3 4

GenProg

M32

M52

SE

p
−

va
lu

e
:

6
.7

4
e

−
0

4

hter

(f) HTER in fr-en

Figure 3: Critical di↵erence diagrams. The kernels are ordered following the
results in their ranking. The metrics with no significant di↵erences among
them are matched with a straight line. On the top, the results for the en-es

news-test2010 dataset with 50-dimensional word-vectors can be found. On the
bottom of the figure, the results for fr-en news-test2009 with 52-dimensional
word-vectors are shown. For all kernels, the mean sentence embedding has
been used.

Another important question is whether the di↵erent ways to compute sen-
tence embeddings influences the quality of the prediction. In the next experi-
ment, we investigate this issue. Figure 4 shows the violin plots [16] for RMSE
as computed in the test set with the max, mean, and std functions of the word-
vectors used. In these experiments, the 300-dimensional embeddings have been
used. Each violin plot represents a histogram smoothened using a kernel density
with Normal kernel. RMSE values for each of the 30 executions are shown as
black vars.

The analysis of Figure 4 reveals that there are not major di↵erences in sen-
tence embeddings for the “HTER” metric. However, for the “score” metric,
max embeddings produce smaller errors in the predictions than the other two
sentence embedding functions for the two datasets. This e↵ect is more pro-
nounced for the time metric in the fr-en news-test2009 dataset, for which the
max embeddings produce better predictions.

11

(a) score in en-es (b) time in en-es (c) HTER in en-es

(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Figure 4: Comparison of the three sentence embeddings: max, mean, and std

on the two datasets, and three e↵ort estimation metrics. For all kernels, 300-
dimensional embeddings have been used.

6 Conclusions

Quality estimation of automatic translation has grown in interest in recent years.
There are many factors that influence the quality of the final estimation. In
particular, the type of text representation used and the class of regressor models
are very relevant questions. In this paper, using di↵erent QE metrics, we have
investigated how the joint determination of these factors influences the final
QE. We have focused on GP models, evaluating evolutionary generated kernels,
which can be more flexible than classical kernels.

Our results show that GenProg is the best performing kernel for most of the
configurations, although in most cases no significant di↵erences were found. For
one particular metric, the “score” metric, evolved kernels produce better results
than simpler classical models on average in both datasets. Moreover, in fr-

en news-test2009 dataset, significant di↵erences with the classical kernels were
found for the “time” metric. If the e↵ort needed to train the model is not an
issue, the GenProg approach is the recommended option. Alternatively, classical
kernels, particularly the M32 kernel, are a good choice if a faster prediction is
needed.

In terms of the sentence embeddings used, max embedding showed a slight
advantage over extensively used mean embeddings. However, this e↵ect seems
to depend on the particular metric approximated since for the “HTER” metric
we did not observe any di↵erence between the sentence embeddings used. This
may indicate that word embeddings in general are not a good feature repre-
sentation for “HTER”. The choice of the dimensionality of word embeddings

12

produced a more marked e↵ect in the quality of the predictions.
As future work we consider the further evaluation of the GP kernels using

other features and more sophisticated approaches to compute sentence embed-
dings.

Acknowledgments

The research presented in this paper has been partially supported by the Basque
Government (ELKARTEK programs), and Spanish Ministry of Economy and
Competitiveness MINECO (project TIN2016-78365-R). Jose A. Lozano is also
supported by BERC 2018-2021 (Basque Government), and Severo Ochoa Pro-
gram SEV-2017-0718 (Spanish Ministry of Economy, Industry and Competitive-
ness).

References

[1] Beck, D.: Modelling Representation Noise in Emotion Analysis using Gaus-
sian Processes. In: Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 2: Short Papers). pp.
140–145. Asian Federation of Natural Language Processing, Taipei, Tai-
wan (Nov 2017), https://www.aclweb.org/anthology/I17-2024

[2] Beck, D., Cohn, T., Hardmeier, C., Specia, L.: Learning Struc-
tural Kernels for Natural Language Processing. Transactions of the
Association for Computational Linguistics 3, 461–473 (Dec 2015).
https://doi.org/10.1162/tacl a 00151, https://doi.org/10.1162/tacl_
a_00151

[3] Bing, W., Wen-qiong, Z., Ling, C., Jia-hong, L.: A GP-
based kernel construction and optimization method for RVM. In:
2010 The 2nd International Conference on Computer and Au-
tomation Engineering (ICCAE). vol. 4, pp. 419–423 (Feb 2010).
https://doi.org/10.1109/ICCAE.2010.5451646

[4] Callison-Burch, C., Koehn, P., Monz, C., Zaidan, O.F.: Findings of the
2011 Workshop on Statistical Machine Translation. In: Proceedings of
the Sixth Workshop on Statistical Machine Translation. pp. 22–64. WMT
’11, Association for Computational Linguistics, Stroudsburg, PA, USA
(2011), http://dl.acm.org/citation.cfm?id=2132960.2132964, event-
place: Edinburgh, Scotland

[5] Cohn, T., Preotiuc-Pietro, D., Lawrence, N.: Gaussian processes for nat-
ural language processing. In: Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics: Tutorials. pp. 1–3 (2014)

13

[6] Cohn, T., Specia, L.: Modelling annotator bias with multi-task gaussian
processes: An application to machine translation quality estimation. In:
Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). vol. 1, pp. 32–42 (2013)

[7] Deriu, J., Lucchi, A., De Luca, V., Severyn, A., Müller, S., Cieliebak,
M., Hofmann, T., Jaggi, M.: Leveraging Large Amounts of Weakly
Supervised Data for Multi-Language Sentiment Classification. In: Pro-
ceedings of the 26th International Conference on World Wide Web.
pp. 1045–1052. WWW ’17, International World Wide Web Confer-
ences Steering Committee, Republic and Canton of Geneva, Switzerland
(2017). https://doi.org/10.1145/3038912.3052611, https://doi.org/10.
1145/3038912.3052611, event-place: Perth, Australia

[8] Diosan, L., Rogozan, A., Pecuchet, J.P.: Evolving kernel functions for
SVMs by genetic programming. In: Sixth International Conference on
Machine Learning and Applications (ICMLA 2007). pp. 19–24 (2007).
https://doi.org/10.1109/ICMLA.2007.70

[9] Dioşan, L., Rogozan, A., Pecuchet, J.P.: Improving classification per-
formance of Support Vector Machine by genetically optimising ker-
nel shape and hyper-parameters. Applied Intelligence 36(2), 280–294
(Mar 2012). https://doi.org/10.1007/s10489-010-0260-1, https://link.
springer.com/article/10.1007/s10489-010-0260-1

[10] Duvenaud, D.: Automatic model construction with Gaussian processes.
Thesis, University of Cambridge (2014), http://www.repository.cam.
ac.uk/handle/1810/247281

[11] Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., Zoubin, G.: Struc-
ture Discovery in Nonparametric Regression through Compositional Kernel
Search. In: Proceedings of The 30th International Conference on Machine
Learning. pp. 1166–1174 (2013), http://jmlr.org/proceedings/papers/
v28/duvenaud13.html

[12] Friedman, M.: The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the american statistical as-
sociation 32(200), 675–701 (1937)

[13] Gagné, C., Schoenauer, M., Sebag, M., Tomassini, M.: Genetic Pro-
gramming for Kernel-Based Learning with Co-evolving Subsets Selec-
tion. In: Parallel Problem Solving from Nature - PPSN IX, pp. 1008–
1017. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11844297 102, https://link.springer.
com/chapter/10.1007/11844297_102

[14] Genton, M.G.: Classes of Kernels for Machine Learning: A Statistics Per-
spective. J. Mach. Learn. Res. 2, 299–312 (Mar 2002), http://dl.acm.
org/citation.cfm?id=944790.944815

14

[15] Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning
Word Vectors for 157 Languages. In: Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation (LREC-2018).
European Languages Resources Association (ELRA), Miyazaki, Japan
(May 2018)

[16] Hintze, J.L., Nelson, R.D.: Violin Plots: A Box Plot-Density
Trace Synergism. The American Statistician 52(2), 181–184 (May
1998). https://doi.org/10.1080/00031305.1998.10480559, https://www.
tandfonline.com/doi/abs/10.1080/00031305.1998.10480559

[17] Howley, T., Madden, M.G.: An Evolutionary Approach to Automatic
Kernel Construction. In: Artificial Neural Networks – ICANN 2006.
pp. 417–426. Lecture Notes in Computer Science, Springer, Berlin, Hei-
delberg (Sep 2006). https://doi.org/10.1007/11840930 43, https://link.
springer.com/chapter/10.1007/11840930_43

[18] Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen,
W.: Tuning and evolution of support vector kernels. Evolutionary Intelli-
gence 5(3), 153–170 (Sep 2012). https://doi.org/10.1007/s12065-012-0073-
8, https://link.springer.com/article/10.1007/s12065-012-0073-8

[19] Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press (1992)

[20] Kronberger, G., Kommenda, M.: Evolution of Covariance Functions
for Gaussian Process Regression Using Genetic Programming. In: Com-
puter Aided Systems Theory - EUROCAST 2013. pp. 308–315. Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg (Feb 2013).
https://doi.org/10.1007/978-3-642-53856-8 39, https://link.springer.
com/chapter/10.1007/978-3-642-53856-8_39

[21] Lampos, V., Zou, B., Cox, I.J.: Enhancing Feature Selection Us-
ing Word Embeddings: The Case of Flu Surveillance. In: Pro-
ceedings of the 26th International Conference on World Wide Web.
pp. 695–704. WWW ’17, International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland
(2017). https://doi.org/10.1145/3038912.3052622, https://doi.org/10.
1145/3038912.3052622, event-place: Perth, Australia

[22] Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J., Ghahramani, Z.:
Automatic Construction and Natural-Language Description of Nonpara-
metric Regression Models. In: Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence (Jun 2014), https://www.aaai.org/ocs/index.php/
AAAI/AAAI14/paper/view/8240

[23] Mercer, J., A, B.: XVI. Functions of positive and nega-
tive type, and their connection the theory of integral equa-
tions. Phil. Trans. R. Soc. Lond. A 209(441-458), 415–446

15

(Jan 1909). https://doi.org/10.1098/rsta.1909.0016, http://rsta.
royalsocietypublishing.org/content/209/441-458/415

[24] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
Representations of Words and Phrases and their Compositionality. In:
Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q.
(eds.) Advances in Neural Information Processing Systems 26, pp. 3111–
3119. Curran Associates, Inc. (2013), http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
pdf

[25] Montana, D.J.: Strongly Typed Genetic Programming.
Evolutionary Computation 3(2), 199–230 (Jun 1995).
https://doi.org/10.1162/evco.1995.3.2.199, https://doi.org/10.1162/
evco.1995.3.2.199

[26] Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word
representation. In: Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP). pp. 1532–1543 (2014)

[27] Polajnar, T., Rogers, S., Girolami, M.: Protein interaction detection in
sentences via Gaussian Processes: a preliminary evaluation. International
journal of data mining and bioinformatics 5(1), 52–72 (2011)

[28] Powell, M.J.D.: An e�cient method for finding the minimum of a function
of several variables without calculating derivatives. The Computer Journal
7(2), 155–162 (Jan 1964). https://doi.org/10.1093/comjnl/7.2.155, http:
//comjnl.oxfordjournals.org/content/7/2/155

[29] Preoţiuc-Pietro, D., Cohn, T.: A temporal model of text periodicities using
Gaussian Processes. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. pp. 977–988 (2013)

[30] Rasmussen, C.E., Williams, C.K.: Gaussian processes for machine learning.
MIT Press (2006)

[31] Santana, R.: Reproducing and learning new algebraic operations on word
embeddings using genetic programming. arXiv:1702.05624 [cs] (Feb 2017),
http://arxiv.org/abs/1702.05624, arXiv: 1702.05624

[32] Schwarz, G.: Estimating the Dimension of a Model. The Annals of Statis-
tics 6(2), 461–464 (Mar 1978). https://doi.org/10.1214/aos/1176344136,
https://projecteuclid.org/euclid.aos/1176344136

[33] Sha↵er, J.P.: Modified Sequentially Rejective Multiple Test Procedures.
Journal of the American Statistical Association (Mar 2012), https://
amstat.tandfonline.com/doi/abs/10.1080/01621459.1986.10478341

16

[34] Shah, K., Cohn, T., Specia, L.: An investigation on the e↵ectiveness of
features for translation quality estimation. In: Proceedings of the Machine
Translation Summit. vol. 14, pp. 167–174. Citeseer (2013)

[35] Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of
translation edit rate with targeted human annotation. In: In Proceedings
of Association for Machine Translation in the Americas. pp. 223–231 (2006)

[36] Specia, L.: Exploiting objective annotations for measuring translation post-
editing e↵ort. In: Proceedings of the 15th Conference of the European
Association for Machine Translation. pp. 73–80 (2011)

[37] Specia, L., Shah, K., de Souza, J.G., Cohn, T.: QuEst - A translation
quality estimation framework. In: Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics: System Demonstrations.
pp. 79–84. Association for Computational Linguistics, Sofia, Bulgaria (Aug
2013)

[38] Sullivan, K.M., Luke, S.: Evolving Kernels for Support Vector Machine
Classification. In: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation. pp. 1702–1707. GECCO ’07, ACM, New
York, NY, USA (2007). https://doi.org/10.1145/1276958.1277292, http:
//doi.acm.org/10.1145/1276958.1277292

[39] Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag,
Berlin, Heidelberg (1995)

17

