1,527 research outputs found

    Second phalanx shortening osteotomy. An innovative technique for long second toe syndrome

    Get PDF
    AbstractLong second-toe syndrome, although frequent and disabling, has been little described. Current surgical techniques often lead to loss of function. Based on anatomical and biomechanical observations, the present study reports a second phalanx shortening osteotomy technique. The procedure is relatively non-invasive, involving self-stabilizing segment resection osteotomy of the second phalanx. Results for the first 23 feet undergoing the procedure were analyzed retrospectively. Assessment comprised clinical examination, radiography and AOFAS and FAAM scores. Mean follow-up was 19±9.9months. Second phalanx shortening osteotomy proved reliable, respecting the biomechanics of the toe

    Scaling properties of the critical behavior in the dilute antiferromagnet Fe(0.93)Zn(0.07)F2

    Full text link
    Critical scattering analyses for dilute antiferromagnets are made difficult by the lack of predicted theoretical line shapes beyond mean-field models. Nevertheless, with the use of some general scaling assumptions we have developed a procedure by which we can analyze the equilibrium critical scattering in these systems for H=0, the random-exchange Ising model, and, more importantly, for H>0, the random-field Ising model. Our new fitting approach, as opposed to the more conventional techniques, allows us to obtain the universal critical behavior exponents and amplitude ratios as well as the critical line shapes. We discuss the technique as applied to Fe(0.93)Zn(0.07)F2. The general technique, however, should be applicable to other problems where the scattering line shapes are not well understood but scaling is expected to hold.Comment: 17 pages, 5 figure

    COSMOS: the COsmic-ray Soil Moisture Observing System

    Get PDF
    The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS). The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes

    PREVIRNEC A new platform for cognitive tele-rehabilitation

    Full text link
    Acquired Brain Injury (ABI), either caused by vascular or traumatic nature, is one of the most important causes for neurological disabilities. People who suffer ABI see how their quality of life decreases, due to the affection of one or some of the cognitive functions (memory, attention, language or executive functions). The traditional cognitive rehabilitation protocols are too expensive, so every help carried out in this area is justified. PREVIRNEC is a new platform for cognitive tele-rehabilitation that allows the neuropsychologist to schedule rehabilitation sessions consisted of specifically designed tasks, plus offering an additional way of communication between neuropsychologists and patients. Besides, the platform offers a knowledge management module that allows the optimization of the cognitive rehabilitation to this kind of patients

    Influence of dose and route of administration on the outcome of infection with the virulent Neospora caninum isolate Nc-Spain7 in pregnant sheep at mid-gestation

    Get PDF
    Experimental infections in pregnant sheep have been focused on studying the effect of the time of challenge on the outcome of N. caninum infection, whereas the impact of the dose and route of challenge has not been studied in depth. Therefore, clinical outcome, immune responses, parasite detection and burden, and lesion severity in placental tissues and foetal brains were investigated in 90-day-pregnant sheep inoculated intravenously with 105 (G1), 104 (G2), 103 (G3), or 102 (G4) tachyzoites or subcutaneously with 104 (G5) tachyzoites of the virulent Nc-Spain7 isolate and an uninfected group (G6). Comparing challenge doses, G1 was the only group that had 100% abortion. Likewise, IFN¿ levels in G1 increased earlier than those in other intravenously infected groups, and IgG levels on day 21 post-infection (pi) were higher in G1 than those in other intravenously infected groups. Concerning vertical transmission, G1 shows a higher parasite burden in the foetal brain than did G2 and G3. Comparing routes of administration, no differences in foetal survival rate or parasite load in the foetal brain were found. Although G2 had higher IFN¿ levels than G5 on day 10 pi, no differences were found in humoral immune responses. Because the outcome after intravenous infection with 105 tachyzoites was similar to that observed after intravenous infection with 106 tachyzoites used in a previous work (100% abortion and vertical transmission), we conclude that it may be reasonable to use 105 tachyzoites administered by the intravenous route in further experiments when assessing drugs or vaccine candidates

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    Magnetically textured y-Fe2O3 nanoparticles in a silica gel matrix: structural and magnetic properties

    No full text
    International audienceThis paper is devoted to magnetic and structural properties of anisotropic g -Fe2O3 superparamagnetic particles dispersed in a transparent xerogel matrix. The effect of frozen anisotropy axes and magnetic texture, induced by a magnetic field applied during the solidification of the matrix on the in-field magnetization process, is studied by alternating gradient force magnetometry and first and second order magneto-optical effects. The changes of magnetization curves with respect to the ferrofluid solution at the same particle concentration are interpreted on the basis of an existing statistical approach extended to systems with particle size distribution, which has to be taken into account for real samples. A very good agreement between the experiment and theory was achieved for a log-normal distribution of diameters which well resembles that deduced from electron microscopy observations in different imaging modes. This structural analysis states the parameter values used in calculations and confirms the relevance of basic assumptions of the model for the specimens studied. The experimental results and the related theoretical discussion should be of use to understand magnetic properties of other magnetically textured superparamagnetic system

    Time decay of the remanent magnetization in the ±J\pm J spin glass model at T=0

    Full text link
    Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetization in the ±J\pm J Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic interactions has been investigated. Starting from the saturation, the magnetization per spin mm reveals a slow decrease with time, which can be approximated by a power law:m(t)=m∞+(ta0)a1m(t)=m_{\infty}+ ({t\over a_{0}})^{a_{1}}, a1<0a_{1} < 0. Moreover, its relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable isoenergetic microstates remaining magnetized. Such behaviour is discussed in terms of a random walk the system performs on its available configuration space.Comment: 9 pages, 3 figure
    • …
    corecore