476 research outputs found
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
Probing Nuclear forces beyond the drip-line using the mirror nuclei N and F
Radioactive beams of O and O were used to populate the resonant
states 1/2, 5/2 and in the unbound F and F
nuclei respectively by means of proton elastic scattering reactions in inverse
kinematics. Based on their large proton spectroscopic factor values, the
resonant states in F can be viewed as a core of O plus a proton
in the 2s or 1d shell and a neutron in 1p. Experimental
energies were used to derive the strength of the 2s-1p and
1d-1p proton-neutron interactions. It is found that the former
changes by 40% compared with the mirror nucleus N, and the second by
10%. This apparent symmetry breaking of the nuclear force between mirror nuclei
finds explanation in the role of the large coupling to the continuum for the
states built on an proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular
article in Physical Review
Prolate-Spherical Shape Coexistence at N=28 in S
The structure of S has been studied using delayed and
electron spectroscopy at \textsc{ganil}. The decay rates of the 0
isomeric state to the 2 and 0 states have been measured for the
first time, leading to a reduced transition probability
B(E2~:~20= 8.4(26)~efm and a monopole
strength (E0~:~00
=~8.7(7)10. Comparisons to shell model calculations point
towards prolate-spherical shape coexistence and a phenomenological two level
mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
In-beam fast-timing measurements in 103,105,107Cd
Fast-timing measurements were performed recently in the region of the
medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions.
Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors
working in coincidence. Results on new and re-evaluated half-lives are
discussed within a systematic of transition rates. The states in
103,105,107Cd are interpreted as arising from a single-particle excitation. The
half-life analysis of the states in 103,105,107Cd shows no change in
the single-particle transition strength as a function of the neutron number
New pathway to bypass the 15O waiting point
We propose the sequential reaction process
O(,)O as a new pathway to bypass of the
O waiting point. This exotic reaction is found to have a surprisingly
high cross section, approximately 10 times higher than the
O(,)O. These cross sections were calculated after
precise measurements of energies and widths of the proton-unbound F low
lying states, obtained using the H(O,p)O reaction. The large
cross section can be understood to arise from the more
efficient feeding of the low energy wing of the ground state resonance by the
gamma decay. The implications of the new reaction in novae explosions and X-ray
bursts are discussed.Comment: submitte
High-precision quadrupole moment reveals significant intruder component in 13 33Al20 ground state
The electric quadrupole moment of the Al201333 ground state, located at the border of the island of inversion, was obtained using continuous-beam β-detected nuclear quadrupole resonance (β-NQR). From the measured quadrupole coupling constant νQ=2.31(4) MHz in an α-Al2O3 crystal, a precise value for the electric quadrupole moment is extracted: |Qs(Al33)|=141(3) mb. A comparison with large-scale shell model calculations shows that Al33 has at least 50% intruder configurations in the ground state wave function, favoring the excitation of two neutrons across the N=20 shell gap. Al33 therefore clearly marks the gradual transition north of the deformed Na and Mg nuclei towards the normal Z≥14 isotopesThis work was partly supported by the European Community FP6—Structuring the ERA—Integrated Infrastructure Initiative Contract EURONS No. RII3-CT-2004-506065, by the FWO-Vlaanderen, by the IAP programme of the Belgium Science Policy under Grants No. P6/23 and No. P7/12, by a grant of the MICINN (Spain) (FPA2011-29854), by the Nupnet network SARFEN (PRI-PIMMNUP-2011-1361), by MINECO (Spain) Centro de Excelencia Severo Ochoa Programme under Grant No. SEV-2012-0249, and by JSPS KAKENHI (Japan) Grants No. 21740204 and No. 15K05094. The experiment was carried out under Experimental Program E437
The N=14 shell closure in O viewed through a neutron sensitive probe
NESTER PTHInternational audienceTo investigate the behavior of the N=14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2+1 inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured with a secondary beam intensity of only 1200 particles per second using the MUST silicon strip detector array at the GANIL facility. A phenomenological analysis yields a deformation parameter bp;p' = 0.26 +- 0.04 for the 2+1 state, much lower than in 20O, showing a surprisingly weak neutron contribution to this state. A fully microscopic analysis was performed using optical potentials obtained from matter and transition densities generated by continuum Skyrme-HFB and QRPA calculations, respectively. When the present results and those from a 22O + 197Au scattering experiment are combined, the ratio of neutron to proton contributions to the 2+1 state is found close to the N/Z ratio, demonstrating a strong N=14 shell closure in the vicinity of the neutron drip-line
Low-lying spectroscopy of a few even-even silicon isotopes investigated by means of the multiparticle-multihole Gogny energy density functional
A multiconfiguration microscopic method has been applied with the Gogny
effective interaction to the calculation of low-lying positive-parity states in
even-even Si isotopes. The aim of the study is to compare the results
of this approach with those of a standard method of GCM type and to get insight
into the predictive power of multiconfiguration methods employed with effective
nucleon-nucleon force taylored to mean-field calculations. It is found that the
multiconfiguration approach leads to an excellent description of the low-lying
spectroscopy of Si, Si and Si, but gives a systematic
energy shift in Si. A careful analysis of this phenomenon shows that
this discrepancy originates from too large matrix elements in the
proton-neutron residual interaction supplied by the Gogny interaction. Finally,
a statistical analysis of highly excited configurations in Si is
performed, revealing exponential convergence in agreement with previous work in
the context of the shell model approach. This latter result provides strong
arguments towards an implicit treatment of highly excited configurations.Comment: 17 pages, 13 figures, 11 table
Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2
The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in
apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte
death called eryptosis is characterized by cell shrinkage and cell membrane
scrambling leading to phosphatidylserine (PS) externalization. Here, we
explored whether MSK1/2 participates in the regulation of eryptosis. To this
end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−)
and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin
concentration and mean erythrocyte volume were similar in both msk−/− and
msk+/+ mice, but reticulocyte count was significantly increased in msk−/−
mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+
erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo
such as hyperosmotic shock or energy depletion to significantly higher levels
in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following
hyperosmotic shock and energy depletion, as well as hemolysis following
decrease of extracellular osmolarity was more pronounced in msk−/−
erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled
erythrocytes from circulating blood was faster in msk−/− mice. The spleens
from msk−/− mice contained a significantly greater number of PS-exposing
erythrocytes than spleens from msk+/+ mice. The present observations point to
accelerated eryptosis and subsequent clearance of erythrocytes leading to
enhanced erythrocyte turnover in MSK1/2-deficient mice
- …