44 research outputs found

    Cortical Activation Patterns of Cue-Paced Foot Movement in Subacute Stroke Patients

    Full text link
    [EN] Limb movement is associated with well defined cortical activation patterns. Structural and functional changes in the brain affect the characteristics of these patterns (strength and topography). Novel strategies for poststroke motor rehabilitation could monitor cortical activity as an additional index of engagement and/or recovery. In this work we analyze differences in cortical activation related to movements of the affected vs. unaffected foot (dorsiflexion). Our results show stronger cortical activation during movements of the affected foot, and stronger responses at the vertex. Online assessment of cortical activation and the experiment described in this work could be added to traditional motor rehabilitation.This work was supported by the FP7 EU Research Project BETTER (247935). The authors are thankful to Silvia Mena del Horno and Javier Bonilla for assistance during the experiments.Belda Lois, JM. (2013). Cortical Activation Patterns of Cue-Paced Foot Movement in Subacute Stroke Patients. Biomedical Engineering / Biomedizinische Technik. 58(1):1-2. https://doi.org/10.1515/bmt-2013-4446S1258

    A pilot study using tactile cueing for gait rehabilitation following stroke

    Get PDF
    Recovery of walking function is a vital goal of post-stroke rehabilitation. Cueing using audio metronomes has been shown to improve gait, but can be impractical when interacting with others, particularly outdoors where awareness of vehicles and bicycles is essential. Audio is also unsuitable in environments with high background noise, or for those with a hearing impairment. If successful, lightweight portable tactile cueing has the potential to take the benefits of cueing out of the laboratory and into everyday life. The Haptic Bracelets are lightweight wireless devices containing a computer, accelerometers and low-latency vibrotactiles with a wide dynamic range. In this paper we review gait rehabilitation problems and existing solutions, and present an early pilot in which the Haptic Bracelets were applied to post-stroke gait rehabilitation. Tactile cueing during walking was well received in the pilot, and analysis of motion capture data showed immediate improvements in gait

    A Gait Rehabilitation pilot study using tactile cueing following Hemiparetic Stroke

    Get PDF
    Recovery of walking function is a major goal of post-stroke rehabilitation. Audio metronomic cueing has been shown to improve gait, but can be impractical and inconvenient to use in a community setting, for example outdoors where awareness of traffic is needed, as well as being unsuitable in environments with high background noise, or for those with a hearing impairment. Silent lightweight portable tactile cueing, if similarly successful, has the potential to take the benefits out of the lab and into everyday life. The Haptic Bracelets, designed and built at the Open University originally for musical purposes, are self- contained lightweight wireless devices containing a computer, Wi-Fi chip, accelerometers and low-latency vibrotactiles with a wide dynamic range. In this paper we outline gait rehabilitation problems and existing solutions, and present an early pilot in which the Haptic Bracelets were applied to post-stroke gait rehabilitation

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.

    Get PDF
    Exoskeletons are mechatronic systems worn by a person in such a way that the physical interface permits a direct transfer of mechanical power and exchange of information. Upper limb robotic exoskeletons may be helpful for people with disabilities and/or limb weakness or injury. Tremor is the most common movement disorder in neurological practice. In addition to medication, rehabilitation programs, and deep brain stimulation, biomechanical loading has appeared as a potential tremor suppression alternative. This paper introduces the robotic exoskeleton called WOTAS (wearable orthosis for tremor assessment and suppression) that provides a means of testing and validating nongrounded control strategies for orthotic tremor suppression. This paper describes in detail the general concept for WOTAS, outlining the special features of the design and selection of system components. Two control strategies developed for tremor suppression with exoskeletons are described. These two strategies are based on biomechanical loading and notch filtering the tremor through the application of internal forces. Results from experiments using these two strategies on patients with tremor are summarized. Finally, results from clinical trials are presented, which indicate the feasibility of ambulatory mechanical suppression of tremor.Clinical TrialJournal ArticleResearch Support, Non-U.S. Gov'tValidation StudiesSCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression.

    Get PDF
    Exoskeletons are mechatronic systems worn by a person in such a way that the physical interface permits a direct transfer of mechanical power and exchange of information. Upper limb robotic exoskeletons may be helpful for people with disabilities and/or limb weakness or injury. Tremor is the most common movement disorder in neurological practice. In addition to medication, rehabilitation programs, and deep brain stimulation, biomechanical loading has appeared as a potential tremor suppression alternative. This paper introduces the robotic exoskeleton called WOTAS (wearable orthosis for tremor assessment and suppression) that provides a means of testing and validating nongrounded control strategies for orthotic tremor suppression. This paper describes in detail the general concept for WOTAS, outlining the special features of the design and selection of system components. Two control strategies developed for tremor suppression with exoskeletons are described. These two strategies are based on biomechanical loading and notch filtering the tremor through the application of internal forces. Results from experiments using these two strategies on patients with tremor are summarized. Finally, results from clinical trials are presented, which indicate the feasibility of ambulatory mechanical suppression of tremor.Clinical TrialJournal ArticleResearch Support, Non-U.S. Gov'tValidation StudiesSCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Bioinformatic approaches used in modelling human tremor

    No full text
    Bioinformatics is a field of information technology concerning the storage, retrieval, analysis, visualization, prediction and analysis of sets of data with biological or clinical significance. Tremor is a common movement disorder, for which pharmacological and neurophysiological models have been developed these last 3 decades, and which is at the frontier of biology, health sciences and computer technologies. Recently, new biomechanical modelling approaches of tremor have been proposed, based upon ambulatory systems and body area networks (BAN). Use of digital signal processing (DSP) techniques taking into account the non-linearity and non stationarity features of tremor time-series is reviewed in the present article. In particular, algorithms for instantaneous assessments of oscillations and direct online cancellations have been suggested. We discuss the advantages and drawbacks of the tremor detection algorithms, as well as prediction tools. In addition, promising models based upon neural networks, conductance studies and brain neurotransmitters are under development. These models will allow the accurate simulation of the behaviour of limbs. Their impact is outlined. The field of tremor research represents an excellent application of bioinformatics in medicine and rehabilitation
    corecore