119 research outputs found

    Recent Updates on the Melanin-Concentrating Hormone (MCH) and Its Receptor System: Lessons from MCH1R Antagonists

    Get PDF
    Melanin-concentrating hormone (MCH) is a 19-amino-acid cyclic peptide which was originally found to lighten skin color in fish that is highly conserved among many species. MCH interacts with two G-protein-coupled receptors, MCH1R and MCH2R, but only MCH1R is expressed in rodents. MCH is mainly synthesized in the lateral hypothalamus and zona incerta, while MCH1R is widely expressed throughout the brain. Thus, MCH signaling is implicated in the regulation of many physiological functions. The identification of MCH1R has led to the development of small-molecule MCH1R antagonists that can block MCH signaling. MCH1R antagonists are useful not only for their potential therapeutic value, but also for understanding the physiological functions of the endogenous MCH system. Here, we review the physiological functions of the MCH system which have been investigated using MCH1R antagonists such as food intake, anxiety, depression, reward, and sleep. This will help us understand the physiological functions of the MCH system and suggest some of the potential applications of MCH1R antagonists in human disorders

    Allele-Specific, Age-Dependent and BMI-Associated DNA Methylation of Human MCHR1

    Get PDF
    Background: Melanin-concentrating hormone receptor 1 (MCHR1) plays a significant role in regulation of energy balance, food intake, physical activity and body weight in humans and rodents. Several association studies for human obesity showed contrary results concerning the SNPs rs133072 (G/A) and rs133073 (T/C), which localize to the first exon of MCHR1. The variations constitute two main haplotypes (GT, AC). Both SNPs affect CpG dinucleotides, whereby each haplotype contains a potential methylation site at one of the two SNP positions. In addition, 15 CpGs in close vicinity of these SNPs constitute a weak CpG island. Here, we studied whether DNA methylation in this sequence context may contribute to population- and age-specific effects of MCHR1 alleles in obesity. \ud Principal Findings: We analyzed DNA methylation of a 315 bp region of MCHR1 encompassing rs133072 and rs133073 and the CpG island in blood samples of 49 individuals by bisulfite sequencing. The AC haplotype shows a significantly higher methylation level than the GT haplotype. This allele-specific methylation is age-dependent. In young individuals (20â\u80\u9330 years) the difference in DNA methylation between haplotypes is significant; whereas in individuals older than 60 years it is not detectable. Interestingly, the GT allele shows a decrease in methylation status with increasing BMI, whereas the methylation of the AC allele is not associated with this phenotype. Heterozygous lymphoblastoid cell lines show the same pattern of allele-specific DNA methylation. The cell line, which exhibits the highest difference in methylation levels between both haplotypes, also shows allele-specific transcription of MCHR1, which can be abolished by treatment with the DNA\ud methylase inhibitor 5-aza-2'-deoxycytidine.\ud Conclusions:We show that DNA methylation at MCHR1 is allele-specific, age-dependent, BMI-associated and affects transcription. Conceivably, this epigenetic regulation contributes to the age- and/or population specific effects reported for MCHR1 in several human obesity studies.\ud \ud doi: 10.1371/journal.pone.0017711\u

    Long-Term Outcomes with Subcutaneous C1-Inhibitor Replacement Therapy for Prevention of Hereditary Angioedema Attacks

    Get PDF
    Background For the prevention of attacks of hereditary angioedema (HAE), the efficacy and safety of subcutaneous human C1-esterase inhibitor (C1-INH[SC]; HAEGARDA, CSL Behring) was established in the 16-week Clinical Study for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy (COMPACT). Objective To assess the long-term safety, occurrence of angioedema attacks, and use of rescue medication with C1-INH(SC). Methods Open-label, randomized, parallel-arm extension of COMPACT across 11 countries. Patients with frequent angioedema attacks, either study treatment-naive or who had completed COMPACT, were randomly assigned (1:1) to 40 IU/kg or 60 IU/kg C1-INH(SC) twice per week, with conditional uptitration to optimize prophylaxis (ClinicalTrials.gov registration no. NCT02316353). Results A total of 126 patients with a monthly attack rate of 4.3 in 3 months before entry in COMPACT were enrolled and treated for a mean of 1.5 years; 44 patients (34.9%) had more than 2 years of exposure. Mean steady-state C1-INH functional activity increased to 66.6% with 60 IU/kg. Incidence of adverse events was low and similar in both dose groups (11.3 and 8.5 events per patient-year for 40 IU/kg and 60 IU/kg, respectively). For 40 IU/kg and 60 IU/kg, median annualized attack rates were 1.3 and 1.0, respectively, and median rescue medication use was 0.2 and 0.0 times per year, respectively. Of 23 patients receiving 60 IU/kg for more than 2 years, 19 (83%) were attack-free during months 25 to 30 of treatment. Conclusions In patients with frequent HAE attacks, long-term replacement therapy with C1-INH(SC) is safe and exhibits a substantial and sustained prophylactic effect, with the vast majority of patients becoming free from debilitating disease symptoms

    Influence of different digital terrain models (DTMs)on alpine permafrost modeling

    Full text link
    The thawing of alpine permafrost due to changes in atmospheric conditions can have a severe impact, e.g., on the stability of rock walls. The energy balance model, PERMEBAL, was developed in order to simulate the changes and distribution of ground surface temperature (GST) in complex high-mountain topography. In such environments, the occurrence of permafrost depends greatly on the topography, and thus, the digital terrain model (DTM) is an important input of PERMEBAL. This study investigates the influence of the DTM on the modeling of the GST. For this purpose, PERMEBAL was run with six different DTMs. Five of the six DTMs are based on the same base data, but were generated using different interpolators. To ensure that only the topographic effect on the GST is calculated, the snow module was turned off and uniform conditions were assumed for the whole test area. The analyses showed that the majority of the deviations between the different model outputs related to a reference DTM had only small differences of up to 1 K, and only a few pixels deviated more than 1 K. However, we also observed that the use of different interpolators for the generation of a DTM can result in large deviations of the model output. These deviations were mainly found at topographically complex locations such as ridges and foot of slopes

    The Arctic freshwater system : changes and impacts

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S54, doi:10.1029/2006JG000353.Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.The authors gratefully acknowledge the National Science Foundation (NSF) for funding this synthesis work. This paper is principally the work of authors funded under the NSF-funded Freshwater Integration (FWI) study

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Get PDF
    This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisão enfatiza a expressão e a função dos receptores muscarínicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressão dos receptores muscarínicos e adrenoceptores α1 em compartimentos específicos de dúctulos eferentes, epidídimo, ductos deferentes, vesícula seminal e próstata de várias espécies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do músculo liso, incluindo efeitos na fertilidade masculina. Além disso, a ativação dos receptores muscarínicos leva à transativação do receptor para o fator crescimento epidermal e proliferação das células de Sertoli. Os receptores para relaxina estão presentes no testículo, RXFP1 nas espermátides alongadas e células de Sertoli de rato e RXFP2 nas células de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogênico. A localização de ambos os receptores na porção apical das células epiteliais e no músculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Full text link
    corecore