83 research outputs found

    Collective and Single-particle Motion in Beyond Mean Field Approaches

    Full text link
    We present a novel nuclear energy density functional method to calculate spectroscopic properties of atomic nuclei. Intrinsic nuclear quadrupole deformations and rotational frequencies are considered simultaneously as the degrees of freedom within a symmetry conserving configuration mixing framework. The present method allows the study of nuclear states with collective and single-particle character. We calculate the fascinating structure of the semi-magic 44S nucleus as a first application of the method, obtaining an excellent quantitative agreement both with the available experimental data and with state-of-the-art shell model calculations.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Large amplitude pairing fluctuations in atomic nuclei

    Full text link
    Pairing fluctuations are self-consistently incorporated on the same footing as the quadrupole deformations in present state of the art calculations including particle number and angular momentum conservation as well as configuration mixing. The approach is complemented by the use of the finite range density dependent Gogny force which, with a unique source for the particle-hole and particle-particle interactions, guarantees a self-consistent interplay in both channels. We have applied our formalism to study the role of the pairing degree of freedom in the description of the most relevant observables like spectra, transition probabilities, separation energies, etc. We find that the inclusion of pairing fluctuations mostly affects the description of excited states, depending on the excitation energy and the angular momentum. E0E0 transition probabilities experiment rather big changes while E2E2's are less affected. Genuine pairing vibrations are thoroughly studied with the conclusion that deformations strongly inhibits their existence. These studies have been performed for a selection of nuclei: spherical, deformed and with different degree of collectivity.Comment: 23 pages, 23 Figures, To be published in Phys. Rev.

    Symmetry conserving configuration mixing description of odd mass nuclei

    Full text link
    We present a self-consistent theory for the description of the spectroscopic properties of odd nuclei, which includes exact blocking, particle-number and angular-momentum projection, and configuration mixing. In our theory the pairing correlations are treated in a variation-after-projection approach and the triaxial deformation parameters are explicitly considered as generator coordinates. The angular-momentum and particle-number symmetries are exactly recovered. The use of the effective finite-range density-dependent Gogny force in the calculations provides an added value to the theoretical results. We apply the theory to the textbook example of Mg25 and, although this nucleus has been thoroughly studied in the past, we still provide a novel view of nuclear phenomena taking place in this nucleus. We obtain an overall good agreement with the known experimental energies and transition probabilities without any additional parameter such as effective charges. In particular, we clearly identify six bands, two of which we interpret as collective γ bandsThis work was supported by MINECO (Spain) under contract FPA2014-57196-C5-2-P

    Triaxial Angular Momentum Projection and Configuration Mixing calculations with the Gogny force

    Full text link
    We present the first implementation in the (β,γ)(\beta,\gamma) plane of the generator coordinate method with full triaxial angular momentum and particle number projected wave functions using the Gogny force. Technical details about the performance of the method and the convergence of the results both in the symmetry restoration and the configuration mixing parts are discussed in detail. We apply the method to the study of 24^{24}Mg, the calculated energies of excited states as well as the transition probabilities are compared to the available experimental data showing a good overall agreement. In addition, we present the RVAMPIR approach which provides a good description of the ground and gamma bands in the absence of strong mixing.Comment: 40 pages,14 figure

    On the origin of the anomalous behaviour of 2+ excitation energies in the neutron-rich Cd isotopes

    Full text link
    Recent experimental results obtained using β\beta decay and isomer spectroscopy indicate an unusual behaviour of the energies of the first excited 2+^{+} states in neutron-rich Cd isotopes approaching the N=82 shell closure. To explain the unexpected trend, changes of the nuclear structure far-off stability have been suggested, namely a quenching of the N=82 shell gap already in 130^{130}Cd, only two proton holes away from doubly magic 132^{132}Sn. We study the behaviour of the 2+^+ energies in the Cd isotopes from N=50 to N=82, i.e. across the entire span of a major neutron shell using modern beyond mean field techniques and the Gogny force. We demonstrate that the observed low 2+^+ excitation energy in 128^{128}Cd close to the N=82 shell closure is a consequence of the doubly magic character of this nucleus for oblate deformation favoring thereby prolate configurations rather than spherical ones.Comment: 10 pages, 4 figures, to be publised in Phys. Lett.

    On the impact of large amplitude pairing fluctuations on nuclear spectra

    Get PDF
    The influence of large amplitude pairing fluctuations is investigated in the framework of beyond mean field symmetry conserving configuration mixing calculations. In the numerical application the finite range density dependent Gogny force is used. We investigate the nucleus 54^{54}Cr with particle number and angular momentum projected wave functions considering the axial quadrupole deformation and the pairing gap degree of freedom as generator coordinates. We find that the effects of the pairing fluctuations increase with the excitation energy and the angular momentum. The self-consistency in the determination of the basis states plays an important role.Comment: 9 pages, 5 figure
    corecore