132 research outputs found

    An expression signature of the angiogenic response in gastrointestinal neuroendocrine tumours: correlation with tumour phenotype and survival outcomes.

    Get PDF
    BACKGROUND: Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) are heterogeneous with respect to biological behaviour and prognosis. As angiogenesis is a renowned pathogenic hallmark as well as a therapeutic target, we aimed to investigate the prognostic and clinico-pathological role of tissue markers of hypoxia and angiogenesis in GEP-NETs. METHODS: Tissue microarray (TMA) blocks were constructed with 86 tumours diagnosed from 1988 to 2010. Tissue microarray sections were immunostained for hypoxia inducible factor 1Ξ± (Hif-1Ξ±), vascular endothelial growth factor-A (VEGF-A), carbonic anhydrase IX (Ca-IX) and somatostatin receptors (SSTR) 1–5, Ki-67 and CD31. Biomarker expression was correlated with clinico-pathological variables and tested for survival prediction using Kaplan–Meier and Cox regression methods. RESULTS: Eighty-six consecutive cases were included: 51% male, median age 51 (range 16–82), 68% presenting with a pancreatic primary, 95% well differentiated, 51% metastatic. Higher grading (P=0.03), advanced stage (P<0.001), high Hif-1Ξ± and low SSTR-2 expression (P=0.03) predicted for shorter overall survival (OS) on univariate analyses. Stage, SSTR-2 and Hif-1Ξ± expression were confirmed as multivariate predictors of OS. Median OS for patients with SSTR-2+/Hif-1Ξ±-tumours was not reached after median follow up of 8.8 years, whereas SSTR-2-/Hif-1Ξ±+ GEP-NETs had a median survival of only 4.2 years (P=0.006). CONCLUSION: We have identified a coherent expression signature by immunohistochemistry that can be used for patient stratification and to optimise treatment decisions in GEP-NETs independently from stage and grading. Tumours with preserved SSTR-2 and low Hif-1Ξ± expression have an indolent phenotype and may be offered less aggressive management and less stringent follow up

    Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway

    Get PDF
    Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1–prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1–PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium–calcineurin signalling pathway in a guanine nucleotide-binding protein (Gq/11), extracellular signal-regulated kinases, Ca2+ and calcineurin–nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11RΞ± and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1–PROKR1 signalling pathway regulating IL-11

    Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    Get PDF
    The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer.Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity

    Prokineticin 1 induces Dickkopf 1 expression and regulates cell proliferation and decidualization in the human endometrium

    Get PDF
    Prokineticin 1 (PROK1) signalling via prokineticin receptor 1 (PROKR1) regulates the expression of several genes with important roles in endometrial receptivity and implantation. This study investigated PROK1 regulation of Dickkopf 1 (DKK1) expression, a negative regulator of canonical Wnt signalling, and its function in the non-pregnant endometrium and first trimester decidua. DKK1 mRNA expression is elevated during the mid-secretory phase of the menstrual cycle and expression increases further in first trimester decidua. DKK1 protein expression is localized to glandular epithelial and stromal cells during the proliferative, early- and mid-secretory phases, whereas expression is confined to the stroma in the late-secretory phase and first trimester decidua. PROK1 induces the expression of DKK1 in endometrial epithelial cells stably expressing PROKR1 and in first trimester decidua explants, via a Gq-calcium-calcineurin-nuclear factor of activated T-cells-mediated pathway. Endometrial epithelial cell proliferation is negatively regulated by PROK1-PROKR1 signalling. We demonstrate that this effect on cell proliferation occurs via DKK1 expression, as siRNA targeted against DKK1 reduces the PROK1-induced decrease in proliferation. Furthermore, decidualization of primary human endometrial stromal cells with progesterone and cyclic adenosine monophosphate is inhibited by miRNA knock down of PROK1 or DKK1. These data demonstrate important roles for PROK1 and DKK1 during endometrial receptivity and early pregnancy, which include regulation of endometrial cell proliferation and decidualization

    Critical Role of the Rb Family in Myoblast Survival and Fusion

    Get PDF
    The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival

    Conditional Genetic Elimination of Hepatocyte Growth Factor in Mice Compromises Liver Regeneration after Partial Hepatectomy

    Get PDF
    Hepatocyte growth factor (HGF) has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ERT transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70-80%) of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH), which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4)-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth. Β© 2013 Nejak-Bowen et al

    Prokineticin 2 Is a Hypothalamic Neuropeptide That Potently Inhibits Food Intake

    Get PDF
    OBJECTIVE-Prokineticin 2 (PK2) is a hypothalamic neuropeptide expressed in central nervous system areas known to be involved in food intake. We therefore hypothesized that PK2 plays a role in energy homeostasis. RESEARCH DESIGN AND METHODS - We investigated the effect of nutritional status on hypothalamic PK2 expression and effects of PK2 on the regulation of food intake by intracerebro-ventricular (ICV) injection of PK2 and anti-PK2 antibody. Subsequently, we investigated the potential mechanism of action by determining sites of neuronal activation after ICV injection of PK2, the hypothalamic site of action of PK2, and interaction between PK2 and other hypothalamic neuropeptides regulating energy homeostasis. To investigate PK2's potential as a therapeutic target, we investigated the effect of chronic administration in lean and obese mice. RESULTS - Hypothalamic PK2 expression was reduced by fasting. ICV administration of PK2 to rats potently inhibited food intake, whereas anti-PK2 antibody increased food intake, suggesting that PK2 is an anorectic neuropeptide. ICV administration of PK2 increased c-fos expression in proopiomelanocortin neurons of the arcuate nucleus (ARC) of the hypothalamus. In keeping with this, PK2 administration into the ARC reduced food intake and PK2 increased the release of Ξ±-melanocyte-stimulating hormone (Ξ±-MSH) from ex vivo hypothalamic explants. In addition, ICV coadministration of the Ξ±-MSH antagonist agouti-related peptide blocked the anorexigenic effects of PK2. Chronic peripheral administration of PK2 reduced food and body weight in lean and obese mice. CONCLUSIONS - This is the first report showing that PK2 has a role in appetite regulation and its anorectic effect is mediated partly via the melanocortin system. Β© 2010 by the American Diabetes Association

    Targeted Inactivation of p12Cdk2ap1, CDK2 Associating Protein 1, Leads to Early Embryonic Lethality

    Get PDF
    Targeted disruption of murine Cdk2ap1, an inhibitor of CDK2 function and hence G1/S transition, results in the embryonic lethality with a high penetration rate. Detailed timed pregnancy analysis of embryos showed that the lethality occurred between embryonic day 3.5 pc and 5.5 pc, a period of implantation and early development of implanted embryos. Two homozygous knockout mice that survived to term showed identical craniofacial defect, including a short snout and a round forehead. Examination of craniofacial morphology by measuring Snout Length (SL) vs. Face Width (FW) showed that the Cdk2ap1+/βˆ’ mice were born with a reduced SL/FW ratio compared to the Cdk2ap1+/+ and the reduction was more pronounced in Cdk2ap1βˆ’/βˆ’ mice. A transgenic rescue of the lethality was attempted by crossing Cdk2ap1+/βˆ’ animals with K14-Cdk2ap1 transgenic mice. Resulting Cdk2ap1+/βˆ’:K14-Cdk2ap1 transgenic mice showed an improved incidence of full term animals (16.7% from 0.5%) on a Cdk2ap1βˆ’/βˆ’ background. Transgenic expression of Cdk2ap1 in Cdk2ap1βˆ’/βˆ’:K14-Cdk2ap1 animals restored SL/FW ratio to the level of Cdk2ap1+/βˆ’:K14-Cdk2ap1 mice, but not to that of the Cdk2ap1+/+:K14-Cdk2ap1 mice. Teratoma formation analysis using mESCs showed an abrogated in vivo pluripotency of Cdk2ap1βˆ’/βˆ’ mESCs towards a restricted mesoderm lineage specification. This study demonstrates that Cdk2ap1 plays an essential role in the early stage of embryogenesis and has a potential role during craniofacial morphogenesis

    Direct Infection and Replication of Naturally Occurring Hepatitis C Virus Genotypes 1, 2, 3 and 4 in Normal Human Hepatocyte Cultures

    Get PDF
    Hepatitis C virus (HCV) infection afflicts about 170 million individuals worldwide. However, the HCV life cycle is only partially understood because it has not been possible to infect normal human hepatocytes in culture. The current Huh-7 systems use cloned, synthetic HCV RNA expressed in hepatocellular carcinoma cells to produce virions, but these cells cannot be infected with naturally occurring HCV obtained from infected patients.Here, we describe a human hepatocyte culture permissible to the direct infection with naturally occurring HCV genotypes 1, 2, 3 and 4 in the blood of HCV-infected patients. The culture system mimics the biology and kinetics of HCV infection in humans, and produces infectious virions that can infect naΓ―ve human hepatocytes.This culture system should complement the existing systems, and may facilitate the understanding of the HCV life cycle, its effects in the natural host cell, the hepatocyte, as well as the development of novel therapeutics and vaccines

    3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes

    Get PDF
    Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro
    • …
    corecore