1,557 research outputs found

    The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2

    Get PDF
    Race-specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB-ARC-LRR proteins that carry a C-terminal leucine-rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report the identification of RSI2 (Required for Stability of I-2) as a protein that interacts with the LRR domain of the tomato R protein I-2. RSI2 belongs to the family of small heat shock proteins (sHSPs or HSP20s). HSP20s are ATP-independent chaperones that form oligomeric complexes with client proteins to prevent unfolding and subsequent aggregation. Silencing of RSI2-related HSP20s in Nicotiana benthamiana compromised the hypersensitive response that is normally induced by auto-active variants of I-2 and Mi-1, a second tomato R protein. As many HSP20s have chaperone properties, the involvement of RSI2 and other R protein (co)chaperones in I-2 and Mi-1 protein stability was examined. RSI2 silencing compromised the accumulation of full-length I-2 in planta, but did not affect Mi-1 levels. Silencing of heat shock protein 90 (HSP90) and SGT1 led to an almost complete loss of full-length I-2 accumulation and a reduction in Mi-1 protein levels. In contrast to SGT1 and HSP90, RSI2 silencing led to accumulation of I-2 breakdown products. This difference suggests that RSI2 and HSP90/SGT1 chaperone the I-2 protein using different molecular mechanisms. We conclude that I-2 protein function requires RSI2, either through direct interaction with, and stabilization of I-2 protein or by affecting signalling components involved in initiation of the hypersensitive response

    Cornetto: A Combinatorial Lexical Semantic Database for Dutch

    Get PDF
    One of the goals of the STEVIN programme is the realisation of a digital infrastructure that will enforce the position of the Dutch language in the modern information and communication technology.A semantic database makes it possible to go from words to concepts and consequently, to develop technologies that access and use knowledge rather than textual representations

    Precision Studies of QCD in the Low Energy Domain of the EIC

    Full text link
    The manuscript focuses on the high impact science of the EIC with objective to identify a portion of the science program for QCD precision studies that requires or greatly benefits from high luminosity and low center-of-mass energies. The science topics include (1) Generalized Parton Distributions, 3D imagining and mechanical properties of the nucleon (2) mass and spin of the nucleon (3) Momentum dependence of the nucleon in semi-inclusive deep inelastic scattering (4) Exotic meson spectroscopy (5) Science highlights of nuclei (6) Precision studies of Lattice QCD in the EIC era (7) Science of far-forward particle detection (8) Radiative effects and corrections (9) Artificial Intelligence (10) EIC interaction regions for high impact science program with discovery potential. This paper documents the scientific basis for supporting such a program and helps to define the path toward the realization of the second EIC interaction region.Comment: 103 pages,47 figure

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV Au+Au Collisions

    Get PDF
    A data-driven method was applied to measurements of Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance Δη\Delta\eta-dependent and Δη\Delta\eta-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is Δη\Delta\eta-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of η\eta within the measured range of pseudorapidity η<1|\eta|<1. The relative flow fluctuation was found to be 34%±2%(stat.)±3%(sys.)34\% \pm 2\% (stat.) \pm 3\% (sys.) for particles of transverse momentum pTp_{T} less than 22 GeV/cc. The Δη\Delta\eta-dependent part may be attributed to nonflow correlations, and is found to be 5%±2%(sys.)5\% \pm 2\% (sys.) relative to the flow of the measured second harmonic cumulant at Δη>0.7|\Delta\eta| > 0.7

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.

    Charged-to-neutral correlation at forward rapidity in Au+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at sNN\sqrt{s_{NN}}=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.Comment: 14 pages, 6 figure

    Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at sNN=19.6\sqrt{s_{NN}} = 19.6 and 200 GeV

    Get PDF
    The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity yee<1|y_{ee}|<1 in minimum-bias Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ\rho spectral function for Mee<1.1M_{ee}<1.1 GeV/c2c^{2}. The integrated dielectron excess yield at sNN\sqrt{s_{NN}} = 19.6 GeV for 0.4<Mee<0.750.4<M_{ee}<0.75 GeV/c2c^2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN\sqrt{s_{NN}} = 17.3 GeV. For sNN\sqrt{s_{NN}} = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN\sqrt{s_{NN}} = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV is longer than those in peripheral collisions and at lower energies.Comment: 9 pages, 6 figure
    corecore