552 research outputs found

    Inkjet printed GPS antenna on a 3D printed substrate using low-cost machines

    Get PDF
    Additive manufacturing (AM), also known as 3D printing, is a process of fabricating a 3D digital design by printing layer after layer. 3D printing has advanced very rapidly in recent years and has become an alternative to traditional manufacture methods for customized objects. Originally intended for the prototyping of mechanical objects, this technique has expanded into different areas such as biomedical [1] and electronics [2]. Within electronics, antennas and microwave engineering can greatly benefit from this technology. Researchers have already demonstrated the potential applicability of 3D printing in this field. Light weight waveguides have been fabricated by copper plating plastics forms [3]. Substrates for antenna applications have been modified and new properties have been found with the assistance of additive manufacturing [4]. Novel frequency selective structures (FSS) have been developed by fully [5] and partially [6] metalizing 3D printed elements. Non-uniform electromagnetic band gap structures have been fabricated on printed substrates [7]. Antennas have been placed onto wearables and tested on 3D printed phantoms [8]–[9]. Fig. 1

    The WiFeS S7 AGN survey: Current status and recent results on NGC 6300

    Full text link
    The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) is a targeted survey probing the narrow-line regions (NLRs) of a representative sample of ~140 nearby (z<0.02) Seyfert galaxies by means of optical integral field spectroscopy. The survey is based on a homogeneous data set observed using the Wide Field Spectrograph WiFeS. The data provide a 25x38 arcsec2^2 field-of-view around the galaxy centre at typically ~1.5 arcsec spatial resolution and cover a wavelength range between ~3400 - 7100 A˚\AA at spectral resolutions of ~100 km s−1^{-1} and ~50 km s−1^{-1} in the blue and red parts, respectively. The survey is primarily designed to study gas excitation and star formation around AGN, with a special focus on the shape of the AGN ionising continuum, the interaction between radio jets and the NLR gas, and the nature of nuclear LINER emission. We provide an overview of the current status of S7-based results and present new results for NGC 6300.Comment: 5 pages, 1 figure, Refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Dissecting Galaxies: Separating Star Formation, Shock Excitation and AGN Activity in the Central Region of NGC 613

    Get PDF
    The most rapidly evolving regions of galaxies often display complex optical spectra with emission lines excited by massive stars, shocks and accretion onto supermassive black holes. Standard calibrations (such as for the star formation rate) cannot be applied to such mixed spectra. In this paper we isolate the contributions of star formation, shock excitation and active galactic nucleus (AGN) activity to the emission line luminosities of individual spatially resolved regions across the central 3 ×\times 3 kpc2^2 region of the active barred spiral galaxy NGC∼\sim613. The star formation rate and AGN luminosity calculated from the decomposed emission line maps are in close agreement with independent estimates from data at other wavelengths. The star formation component traces the B-band stellar continuum emission, and the AGN component forms an ionization cone which is aligned with the nuclear radio jet. The optical line emission associated with shock excitation is cospatial with strong H2H_2 and [Fe II] emission and with regions of high ionized gas velocity dispersion (σ>100\sigma > 100 km s−1^{-1}). The shock component also traces the outer boundary of the AGN ionization cone and may therefore be produced by outflowing material interacting with the surrounding interstellar medium. Our decomposition method makes it possible to determine the properties of star formation, shock excitation and AGN activity from optical spectra, without contamination from other ionization mechanisms.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Parsec-scale Magnetic-Field Structures in HEAO-1 BL Lacs

    Get PDF
    We present very long baseline interferometry polarization images of an X-ray selected sample of BL Lacertae objects belonging to the first High Energy Astronomy Observatory (HEAO-1) and the ROSAT-Green Bank (RGB) surveys. These are primarily high-energy-peaked BL Lacs (HBLs) and exhibit core-jet radio morphologies on pc-scales. They show moderately polarized jet components, similar to those of low-energy-peaked BL Lacs (LBLs). The fractional polarization in the unresolved cores of the HBLs is, on average, lower than in the LBLs, while the fractional polarizations in the pc-scale jets of HBLs and LBLs are comparable. However a difference is observed in the orientation of the inferred jet magnetic fields -- while LBL jets are well-known to preferentially exhibit transverse magnetic fields, the HBL jets tend to display longitudinal magnetic fields. Although a `spine-sheath' jet velocity structure, along with larger viewing angles for HBLs could produce the observed magnetic field configuration, differences in other properties of LBLs and HBLs, such as their total radio power, cannot be fully reconciled with the different-angle scenario alone. Instead it appears that LBLs and HBLs differ intrinsically, perhaps in the spin rates of their central black holes.Comment: 41 pages, 21 figures, accepted for publication in MNRA

    OVI Asymmetry and an Accelerated Outflow in an Obscured Seyfert: FUSE and HST STIS Spectroscopy of Markarian533

    Full text link
    We present far-ultraviolet spectra of the Seyfert2 galaxy Mrk533 obtained with FUSE. These spectra show narrow asymmetrical OVI 1032,1038 emission lines with stronger wings shortward of the peak wavelength, but the degree of asymmetry of these wings in velocity is much lower than that of the wings of the lines of lower ionization. In the combined OVI profile there are marginal indications of local absorptions in the outflow. The CIII 977 line is seen weakly with a similar profile, but with very low signal to noise. These FUV spectra are among the first for a Seyfert of type2, i.e., a purportedly obscured Seyfert. The HST STIS spectral image of Mrk533 allows delineation of the various components of the outflow, and we infer that the outflow is accelerated. We discuss the results in terms of nuclear geometry and kinematics.Comment: 19 pages, 5 figures, including 1 colour figure. Accepted in Ap

    Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire

    Get PDF
    Idiosyncratic adverse drug reactions are unpredictable, dose independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkage between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells that required HLA-B*57:01 molecules for their function. However, the mechanism by which abacavir induces this pathologic T cell response remains unclear. Here we show that abacavir can bind within the F-pocket of the peptide-binding groove of HLA-B*57:01 thereby altering its specificity. This supports a novel explanation for HLA-linked idiosyncratic adverse drug reactions; namely that drugs can alter the repertoire of self-peptides presented to T cells thus causing the equivalent of an alloreactive T cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir, and that were recognized by T cells of hypersensitive patients. The assays we have established can be applied to test additional compounds with suspected HLA linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA linked hypersensitivities as well as guide the development of safer drugs

    The 72-Hour WEBT Microvariability Observation of Blazar S5 0716+714 in 2009

    Full text link
    Context. The international whole earth blazar telescope (WEBT) consortium planned and carried out three days of intensive micro-variability observations of S5 0716+714 from February 22, 2009 to February 25, 2009. This object was chosen due to its bright apparent magnitude range, its high declination, and its very large duty cycle for micro-variations. Aims. We report here on the long continuous optical micro-variability light curve of 0716+714 obtained during the multi-site observing campaign during which the Blazar showed almost constant variability over a 0.5 magnitude range. The resulting light curve is presented here for the first time. Observations from participating observatories were corrected for instrumental differences and combined to construct the overall smoothed light curve. Methods. Thirty-six observatories in sixteen countries participated in this continuous monitoring program and twenty of them submitted data for compilation into a continuous light curve. The light curve was analyzed using several techniques including Fourier transform, Wavelet and noise analysis techniques. Those results led us to model the light curve by attributing the variations to a series of synchrotron pulses. Results. We have interpreted the observed microvariations in this extended light curve in terms of a new model consisting of individual stochastic pulses due to cells in a turbulent jet which are energized by a passing shock and cool by means of synchrotron emission. We obtained an excellent fit to the 72-hour light curve with the synchrotron pulse model

    Epstein Barr Virus-Encoded EBNA1 Interference with MHC Class I Antigen Presentation Reveals a Close Correlation between mRNA Translation Initiation and Antigen Presentation

    Get PDF
    Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general

    Optical and radio variability of the BL Lac object AO 0235+16: a possible 5-6 year periodicity

    Full text link
    New optical and radio data on the BL Lacertae object AO 0235+16 have been collected in the last four years by a wide international collaboration, which confirm the intense activity of this source. The optical data also include the results of the Whole Earth Blazar Telescope (WEBT) first-light campaign organized in November 1997. The optical spectrum is observed to basically steepen when the source gets fainter. We have investigated the existence of typical variability time scales and of possible correlations between the optical and radio emissions by means of visual inspection, Discrete Correlation Function analysis, and Discrete Fourier Transform technique. The major radio outbursts are found to repeat quasi-regularly with a periodicity of about 5.7 years; this period is also in agreement with the occurrence of some of the major optical outbursts, but not all of them.Comment: to be published in A&
    • …
    corecore