Idiosyncratic adverse drug reactions are unpredictable, dose independent and
potentially life threatening; this makes them a major factor contributing to
the cost and uncertainty of drug development. Clinical data suggest that many
such reactions involve immune mechanisms, and genetic association studies have
identified strong linkage between drug hypersensitivity reactions to several
drugs and specific HLA alleles. One of the strongest such genetic associations
found has been for the antiviral drug abacavir, which causes severe adverse
reactions exclusively in patients expressing the HLA molecular variant B*57:01.
Abacavir adverse reactions were recently shown to be driven by drug-specific
activation of cytokine-producing, cytotoxic CD8+ T cells that required
HLA-B*57:01 molecules for their function. However, the mechanism by which
abacavir induces this pathologic T cell response remains unclear. Here we show
that abacavir can bind within the F-pocket of the peptide-binding groove of
HLA-B*57:01 thereby altering its specificity. This supports a novel explanation
for HLA-linked idiosyncratic adverse drug reactions; namely that drugs can
alter the repertoire of self-peptides presented to T cells thus causing the
equivalent of an alloreactive T cell response. Indeed, we identified specific
self-peptides that are presented only in the presence of abacavir, and that
were recognized by T cells of hypersensitive patients. The assays we have
established can be applied to test additional compounds with suspected HLA
linked hypersensitivities in vitro. Where successful, these assays could speed
up the discovery and mechanistic understanding of HLA linked hypersensitivities
as well as guide the development of safer drugs