222 research outputs found

    Barriers and facilitators to the implementation of a community-based hypertension improvement project in Ghana: a qualitative study of ComHIP.

    Get PDF
    BACKGROUND: Globally, hypertension is a leading cause of cardiovascular disease and mortality, with the majority of deaths occurring in low- and middle-income countries. Because the burden of hypertension is increasing in low resource settings with restricted infrastructure, it is imperative that new models for hypertension care are realised. One such model is the Community-based Hypertension Improvement Project (ComHIP) which employs a community-based method of task-shifting for managing hypertension. This study is a qualitative analysis of the barriers and facilitators of the main components of ComHIP. METHODS: We purposively selected 55 informants for semi-structured interviews or focus group discussions, which were carried out bythree trained local researchers in Krobo, Twi or English. Informants included patients enrolled in ComHIP, health care providers and Licensed Chemical Sellers trained by ComHIP, and Ghana Health Service employees. Data were analysed using a multi-step thematic analysis. RESULTS: While results of the effectiveness of the intervention are pending, overall, patients and nurses reported positive experiences within ComHIP, and found that it helped enable them to manage their hypertension. Healthcare providers appreciated the additional training, but had some gaps in their knowledge. Ghana Health Service employees were cautiously optimistic about the programme, but expressed some worries about the sustainability of the programme. Many informants expressed concerns over the inability of community nurses and workers to dispense anti-hypertensives, due to legal restrictions. CONCLUSIONS: The WHO recommends task-sharing as a technique for managing chronic conditions such as hypertension in resource constrained settings. ComHIP presents an example of a task-sharing programme with a high level of acceptability to all participants. Going forward, we recommend greater levels of communication and dialogue to allow community-based health workers to be allowed to dispense anti-hypertensives

    Integrated lipidomics and proteomics network analysis highlights lipid and immunity pathways associated with Alzheimer's disease

    Get PDF
    Background: There is an urgent need to understand the pathways and processes underlying Alzheimer’s disease (AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer’s dementia using an unsupervised lipid, protein and gene multi-omics integrative approach. / Methods: A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185 controls, and two proteomics datasets (295 AD, 159 MCI and 197 controls) were used for weighted gene co-expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein modules that showed high correlation with AD phenotypes were also explored. / Results: Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids, triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and complement systems and in lipid metabolism (the APOE ε4 genotype). / Conclusions: Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes

    Disentangling independent and mediated causal relationships between blood metabolites, cognitive factors, and Alzheimer’s Disease

    Get PDF
    Background: Education and cognition demonstrate consistent inverse associations with Alzheimer’s disease (AD). The biological underpinnings, however, remain unclear. Blood metabolites reflect the end point of biological processes and are accessible and malleable. Identifying metabolites with etiological relevance to AD and disentangling how these relate to cognitive factors along the AD causal pathway could, therefore, offer unique insights into underlying causal mechanisms. // Methods: Using data from the largest metabolomics genome-wide association study (N ≈ 24,925) and three independent AD cohorts (N = 4725), cross-trait polygenic scores were generated and meta-analyzed. Metabolites genetically associated with AD were taken forward for causal analyses. Bidirectional two-sample Mendelian randomization interrogated univariable causal relationships between 1) metabolites and AD; 2) education and cognition; 3) metabolites, education, and cognition; and 4) education, cognition, and AD. Mediating relationships were computed using multivariable Mendelian randomization. // Results: Thirty-four metabolites were genetically associated with AD at p < .05. Of these, glutamine and free cholesterol in extra-large high-density lipoproteins demonstrated a protective causal effect (glutamine: 95% confidence interval [CI], 0.70 to 0.92; free cholesterol in extra-large high-density lipoproteins: 95% CI, 0.75 to 0.92). An AD-protective effect was also observed for education (95% CI, 0.61 to 0.85) and cognition (95% CI, 0.60 to 0.89), with bidirectional mediation evident. Cognition as a mediator of the education-AD relationship was stronger than vice versa, however. No evidence of mediation via any metabolite was found. // Conclusions: Glutamine and free cholesterol in extra-large high-density lipoproteins show protective causal effects on AD. Education and cognition also demonstrate protection, though education’s effect is almost entirely mediated by cognition. These insights provide key pieces of the AD causal puzzle, important for informing future multimodal work and progressing toward effective intervention strategies

    Health system challenges to hypertension and related non-communicable diseases prevention and treatment: perspectives from Ghanaian stakeholders.

    Get PDF
    BACKGROUND: Hypertension, itself a cardiovascular condition, is a significant risk factor for other cardiovascular diseases. Hypertension is recognized as a major public health challenge in Ghana. Beginning in 2014, a collaborative team launched the community-based hypertension improvement program (ComHIP) in one health district in Ghana. The ComHIP project, a public-private partnership, tests a community-based model that engages the private sector and utilizes information and communication technology (ICT) to control hypertension. This paper, focuses on the various challenges associated with managing hypertension in Ghana, as reported by ComHIP stakeholders. METHODS: A total of 55 informants - comprising patients, health care professionals, licensed chemical sellers (LCS), national and sub-national policymakers - were purposively selected for interview and focus group discussions (FGDs). Interviews were audio-recorded and transcribed verbatim. Where applicable, transcriptions were translated directly from local language to English. The data were then analysed using two-step thematic analysis. The protocol was approved by the two ethics review committees based in Ghana and the third, based in the United Kingdom. All participants were interviewed after giving informed consent. RESULTS: Our data have implications for the on-going implementation of ComHIP, especially the importance of policy maker buy-in, and the benefits, as well as drawbacks, of the program to different stakeholders. While our data show that the ComHIP initiative is acceptable to patients and healthcare providers - increasing providers' knowledge on hypertension and patients' awareness of same- there were implementation challenges identified by both patients and providers. Policy level challenges relate to task-sharing bottlenecks, which precluded nurses from prescribing or dispensing antihypertensives, and LCS from stocking same. Medication adherence and the phenomenon of medical pluralism in Ghana were identified challenges. The perspectives from the national level stakeholders enable elucidation of whole of health system challenges to ComHIP and similarly designed programmes. CONCLUSIONS: This paper sheds important light on the patient/individual, and system level challenges to hypertension and related non-communicable disease prevention and treatment in Ghana. The data show that although the ComHIP initiative is acceptable to patients and healthcare providers, policy level task-sharing bottlenecks preclude optimal implementation of ComHIP

    The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics.

    Get PDF
    There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer's disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants. Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (Aβ) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling. We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage Aβ+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE ε4 allele was more frequent amongst Aβ+ individuals (p &lt; 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p &lt; 0.001). Aβ+ had a faster rate of decline on the MMSE during follow-up in the NC (p &lt; 0.001) and MCI (p &lt; 0.001) groups. The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of Aβ and APOE ε4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog

    Paired plasma lipidomics and proteomics analysis in the conversion from mild cognitive impairment to Alzheimer's disease.

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways

    Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.

    Get PDF
    Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins. 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid. A panel of proteins (n = 44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve = 0.78) and the replication group (area under the curve = 0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization. The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition

    Validation of plasma proteomic biomarkers relating to brain amyloid burden in the EMIF-Alzheimer's disease multimodal biomarker discovery cohort

    Get PDF
    We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ϵ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure

    Genome-wide association study of Alzheimer's disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset.

    Get PDF
    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from quantifications of five separate amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset
    corecore