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ABSTRACT
BACKGROUND: Education and cognition demonstrate consistent inverse associations with Alzheimer’s disease
(AD). The biological underpinnings, however, remain unclear. Blood metabolites reflect the end point of biological
processes and are accessible and malleable. Identifying metabolites with etiological relevance to AD and disen-
tangling how these relate to cognitive factors along the AD causal pathway could, therefore, offer unique insights into
underlying causal mechanisms.
METHODS: Using data from the largest metabolomics genome-wide association study (N z 24,925) and three
independent AD cohorts (N = 4725), cross-trait polygenic scores were generated and meta-analyzed. Metabolites
genetically associated with AD were taken forward for causal analyses. Bidirectional two-sample Mendelian
randomization interrogated univariable causal relationships between 1) metabolites and AD; 2) education and
cognition; 3) metabolites, education, and cognition; and 4) education, cognition, and AD. Mediating relationships
were computed using multivariable Mendelian randomization.
RESULTS: Thirty-four metabolites were genetically associated with AD at p , .05. Of these, glutamine and free
cholesterol in extra-large high-density lipoproteins demonstrated a protective causal effect (glutamine: 95%
confidence interval [CI], 0.70 to 0.92; free cholesterol in extra-large high-density lipoproteins: 95% CI, 0.75 to
0.92). An AD-protective effect was also observed for education (95% CI, 0.61 to 0.85) and cognition (95% CI, 0.60
to 0.89), with bidirectional mediation evident. Cognition as a mediator of the education-AD relationship was
stronger than vice versa, however. No evidence of mediation via any metabolite was found.
CONCLUSIONS: Glutamine and free cholesterol in extra-large high-density lipoproteins show protective causal
effects on AD. Education and cognition also demonstrate protection, though education’s effect is almost entirely
mediated by cognition. These insights provide key pieces of the AD causal puzzle, important for informing future
multimodal work and progressing toward effective intervention strategies.

https://doi.org/10.1016/j.bpsgos.2021.07.010
Late-onset Alzheimer’s disease (AD) impacts over 47 million
individuals worldwide (1). Factors such as educational attain-
ment (EA) and cognition demonstrate protective associations
with AD (2–4), and these may indeed be causal (5–8). Etio-
logical mechanisms underlying such relationships, however,
remain unclear. Understanding the biological basis through
which cognitive factors may exert their protective effect, as
well as establishing direct markers of disease pathogenesis
more generally, could therefore hold special value in advancing
treatment and prevention strategies.

Blood metabolites—small molecular compounds such as
lipids and amino acids—represent the crosstalk between
genomic encoding and influences from the surrounding
environment (9,10). These analytes could therefore provide
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mechanistic clues as to how cognitive exposures influence
later AD risk. Further, as metabolites are quantifiable via a
simple blood test and of plausible size to cross the blood-
brain barrier (11), they represent promising candidates for
direct treatment intervention. While research has indeed
implicated several metabolites, particularly lipids, in AD and
cognitive processing (12–15), the weight of evidence derives
from observational studies. These remain problematic with
respect to informing intervention strategies, as uncaptured
confounding and reverse causation risk incorrect causal in-
ferences. Moreover, associative studies allow little oppor-
tunity to understand specific pathways into disease end
points, and as such, mediating relationships have been little
explored.
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Mendelian randomization (MR) presents a statistical meth-
odology akin to a randomized controlled trial that allows re-
searchers to investigate putative causal relationships through
use of genetic variants as randomizing instruments (16).
Multivariable (MV) extensions then allow for the interrogation of
exposures that may exist along the same causal pathway,
helping to disentangle independent from mediated causal ef-
fects (17,18). In a previous study, we utilized MR to investigate
causal relationships between 19 candidate metabolites and
AD, finding a protective effect of extra-large high-density li-
poproteins (XL.HDLs) and a risk-increasing effect of glyco-
protein acetyls (19). Candidate metabolites were, however,
restricted to those previously associated with midlife cognition
(20), rather than with AD specifically, neglecting other causal
candidates that may be of relevance. Mediating relationships
were also not explored, which, if demonstrated, could offer
novel intervention sources and provide a richer understanding
of the etiological drivers behind relationships observed.

This study sought to extend our previous findings, this
time using cross-trait polygenic risk scoring (PRS) to screen
for AD-specific candidate metabolites, selecting only those
genetically predictive of AD diagnosis. Then, incorporating
information from education and cognition together with that
of the selected metabolites and AD, we computed inde-
pendent versus mediated causal relationships using a
combination of univariable MR (UVMR) and MVMR. In this
way, we distinguished the extent to which causal relation-
ships were mutually independent, or whether they reflected a
chain of interdependent events along the same AD causal
pathway.

METHODS AND MATERIALS

Data Sources

A summary of datasets utilized across both PRS and MR an-
alyses can be found within Table 1, with further details avail-
able in Supplementary Information I2 in Supplement 1. Briefly,
summary statistics from the largest metabolomics genome-
wide association study (GWAS) (21) were utilized for both
PRS and MR analyses. Nonoverlapping, individual-level
genomic data across three AD cohorts—1) the Genetic and
Environmental Risk in Alzheimer’s Disease (GERAD1)
consortium (https://gtr.ukri.org/project/B6C58A7C-3C3E-41
CB-AF10-16DB59962C9E/), 2) the Alzheimer’s Disease
Table 1. Summary of Datasets Acquired for Use Across PRS an

Phenotype Dataset Phenotypic Mea

Blood Metabolites Kettunen et al. (21) Nuclear magnetic resonance spe

Alzheimer’s Disease GERAD1a Clinical diagnosis

ADNI (22) Clinical diagnosis

ANM (23,24) Clinical diagnosis

Kunkle et al. (25) Clinical diagnosis

Educational Attainment Lee et al. (26) Highest education level obtained

Cognition Savage et al. (27) Multiple dimensions of cognitive
represented by a common late

ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANM, AddNeuroMed
in Alzheimer’s Disease; MR, Mendelian randomization; PRS, polygenic risk

aFor more information on the GERAD1 Consortium, see the Acknowledg
bAvailable ADNI datasets were merged following data preprocessing.
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Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/) (22),
and 3) the AddNeuroMed and Dementia Case Register (ANM)
(23,24)—were utilized as PRS target phenotypes, and sum-
mary level data from Kunkle et al. (25) represented AD in all MR
analyses. Finally, summary data from Lee et al. (26) and Sav-
age et al. (27) represented EA and cognition, respectively.

Polygenic Score Preparation

Quality control was conducted across AD cohorts separately,
each following the same pipeline (Figure 1). Principal compo-
nent analysis was performed using EIGENSOFT 6.1.4. (https://
www.hsph.harvard.edu/alkes-price/software/), and genotyped
data were imputed via the Sanger Imputation Service (https://
imputation.sanger.ac.uk/). Individuals of non-European
ancestry or whose most recent diagnosis was mild cognitive
impairment or non-AD dementia were excluded. The minimum
sample ages within the ADNI, ANM, and GERAD1 cohorts
were 54, 53, and 43 years, respectively. As AD has a long
symptom-free prodrome, samples were age-matched to a
conservative minimum of 70 years. Single nucleotide
polymorphisms (SNPs) within 750 kb of APOE were removed.
Following imputation, separately typed platforms within the
ADNI cohorts were merged.

To quantify signal within metabolite datasets, estimates of
SNP heritability (h2SNP) were computed using linkage disequi-
librium score regression (28). h2Z scores (h2Z = h2SNP/se) were
subsequently computed (29), and datasets with h2Z , 2 or with
h2SNP 0,. 1 were excluded.

MR Preparation

To maximize instrumental variable validity, SNPs were
selected only if they 1) were associated with their exposure
below genome-wide significance (p , 5 3 1028), 2) demon-
strated a computed F .10 (30), and 3) were not within 750 kb
of the APOE genomic region (owing to known pleiotropy)
(31,32). For AD, EA, and intelligence, SNPs were clumped
using an r2 threshold of 0.001 (Tables S2–S4 in Supplement 2).
For metabolites, instruments were selected from a set of
precurated metabolite quantitative trait loci available within
MR-Base (33); no additional clumping was required for these
(Table S5 in Supplement 2). Finally, all datasets were harmo-
nized, and any SNPs with noninferable palindromic SNPs or
with minor allele frequency , 0.01 were excluded. Metabolite
minor allele frequencies were used to infer AD allele
d MR Analyses

sure Sample N Dataset N Level MR or PRS

ctroscopy in plasma w24,925 123 Summary Both

4515 1 Individual PRS

1674 3b Individual PRS

1063 1 Individual PRS

63,926 1 Summary MR

by 30 years of age 1.1 million 1 Summary MR

functioning
nt “g” factor

269,867 1 Summary MR

and Dementia Case Register; GERAD1, Genetic and Environmental Risk
scoring.
ments and Disclosures section.
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Figure 1. Flow chart overviewing quality control
pipelines applied to all AD genotype datasets
(separately) prior to polygenic risk scoring analyses.
*The Illumina Omni2.5 microarray chip includes
samples across ADNI1 and ADNI2, whole-genome
sequenced at high coverage, and subsequently
genotyped on the high-coverage Illumina chip.
**Missingness for both SNPs and samples were
inspected iteratively, from 90% to 98%, iterating
between SNPs and samples in steps of 1%. ***Latest
diagnosis was used to classify samples into cases
and controls. Late-stage MCI, with MCI owing to
probable AD, and clinician confidence score of 3–4
(indicating high confidence) remained in analyses as
cases. ****Required for the Human610-Quad plat-
form only. *****For overlaps between ADN1 chip data
(Human610-Quad) and Omni 2.5M, duplicates in
Omni 2.5M were removed and duplicates in Hu-
man610-Quad were retained. For overlaps between
ADNI1 chip data (HumanOmniExpress) and Omni
2.5M, duplicates in HumanOmniExpress were
removed and duplicates in Omni 2.5M were retained.
No overlaps were observed between Human610-
Quad and HumanOmniExpress. AD, Alzheimer’s
disease; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; ANM, AddNeuroMed and Dementia Case
Register; GERAD, Genetic and Environmental Risk in
Alzheimer’s Disease; LD, linkage disequilibrium;
MAF, minor allele frequency; MCI, mild cognitive
impairment; SNP, single nucleotide polymorphism.
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frequencies, as these were unavailable. All data extraction,
preprocessing, and analyses were performed using the MR-
Base package (v.0.4.25) (33). The detailed scope is provided
in Supplementary Information I3 in Supplement 1.

Primary Statistical Analyses

Cross-Trait Genetic Associations Using Polygenic
Scoring. PRS models were generated using PRSice-2 (34).
Each metabolite was set as the model-generating base dataset
that was then used to predict status within each AD dataset
separately. For each metabolite, models were generated
across 10 predefined p-value thresholds (PTs): 5 3 1028, 1 3

1025, 1 3 1024, .001, .01, .05, .1, .2, .5, 1. SNPs with r2 . 0.1
were clumped, and those with p value , PT were weighted by
their effect size, aggregated within the PRS of the corre-
sponding model, and regressed on AD genotypes separately.
Models were standardized and adjusted for sex, age, and
seven principal components (Supplementary Information I4 in
Supplement 1).

PRS Meta-analyses. PRS for metabolites at every PT were
meta-analyzed across the three AD datasets (35). For each
metabolite, the 10 meta-analyzed results (one per PT) were
ranked by their p value to obtain the metabolite most
Biological Psychiatry: Glob
significantly associated with AD status (Figure S1 in
Supplement 1). Pseudo-R2s were back-computed using the
meta-analyzed regression coefficients (Supplementary
Information I5 in Supplement 1), and I2 and Cochran’s Q
assessed cross-study heterogeneity (I2 . 0.5 and Q-p , .05).
An adjusted alpha of a = 0.0002 was computed to account for
multiple testing (Supplementary Information I6 in Supplement 1).

Bidirectional Causal Analyses. Inverse variance–
weighted (IVW) two-sample UVMR computed nonmediated
causal relationships (32). To compute the total causal effect of
each metabolite on AD, metabolite1.j was set as the exposure
(x) in turn, and AD was set as the outcome (y). To interrogate
reverse causation, x and y were then reversed. This bidirec-
tional procedure was repeated for metabolites and education,
metabolites and cognition, education and AD, cognition and
AD, and education and cognition. While the temporal order of
education (highest grade at 30 years of age) and AD make
reverse causation implausible, bidirectional analyses were
undertaken as a negative control. All results were computed in
SD units.

Causal Mediation. MVMR was employed to interrogate
mediation. This followed the same framework as UVMR
al Open Science April 2022; 2:167–179 www.sobp.org/GOS 169
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but with the addition of a second “mediating” variable (m),
allowing for a causal estimate of x on y while holding m
constant. A difference between the total estimate (c)
derived from UVMR and the direct estimate (c0) derived
from MVMR was used to signify a mediating effect of m
on the x-y relationship (Figure 2) (18). To ensure that
direct estimates were not biased by confounding of m,
datasets were cross-checked to ensure that no instru-
mental variable overlap existed between x and m
(Tables S2–S5 in Supplement 2). In this way, any m-to-x
confounding would not enter into c0 (17).

For variables to be taken forward to MVMR, evidence of an
association from x to m (when m = y) and from m to y (when
m = x) was first required within UVMR. A total causal effect of x
to y was not, however, necessary owing to potential sup-
pression through m (36). UV results were therefore used to
inform variable selection for MVMR. Any exposure with a UV
effect on y but no UV effect on a potential m (when m = y) was
automatically deemed to be acting independently of m and not
selected for MVMR.
Sensitivity Analyses

For both UVMR and MVMR analyses, causal effects were re-
estimated using MR-Egger (37). For UVMR, several addi-
tional sensitivities were undertaken, including 1) weighted
median MR (32), 2) leave-one-out analysis, 3) instrument
heterogeneity analysis (Cochran’s Q) (38), and 4) MR–
Bayesian model averaging (metabolite-AD analyses only)
(39). Further information can be found in Supplementary
Information I7 in Supplement 1.
A C

B D

magnitude of C0 relative to C but a significant relationship maintained) or fully inac
Panels (C) and (D) depict bidirectional relationships. For panel (C), a significant c
For panel (D), a significant causal effect is observed when switching X and M
between X, M, and Y. Core MR assumptions are assumed to hold in all models: 1)
relationship between G1.j and X.
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Post Hoc Analyses

Following primary analyses, an instrumental variable outlier for
one metabolite with a statistically significant causal associa-
tion with AD—glutamine—was observed. To further explore
the validity of glutamine as a causal analyte, two post hoc
analyses were undertaken.

Single-SNP MR. The instrumental variable outlier
(rs2657879) identified for glutamine demonstrated a notably
significant genome-wide association (p = 3 3 10270) relative to
other glutamine SNPs. rs2657879 is also located within the
genomic region of GLS2, a protein-encoding gene involved in
the conversion of glutamine to glutamate as part of the
glutamine-glutamate cycle (Figures S2 and S3 in Supplement
1) (40–42), indicating strong biological relevance. We there-
fore carried out a post hoc single-SNP MR using an inde-
pendent dataset (43), setting only rs2657879 as the
instrumental variable. The Wald ratio was used to assess
causality (44).

Subthreshold MR. At the opposite extreme, we investi-
gated how increasing SNP instrumental variable numbers
might improve power in the absence of rs2657879. Relaxing
the PT risks introducing pleiotropic instruments. However, we
used knowledge from our PRS analyses to inform the sub-
threshold selected, relaxing this to independent SNPs signifi-
cant at p , .0001.

APOE-Related Polygenic Association. For all primary
analyses, SNPs within the APOE genomic region were
removed. For PRS, APOE was removed owing to its unusually
Figure 2. Diagrammatic illustration of causal
paths identifiable using univariable and multivariable
Mendelian randomization, assuming that Mendelian
randomization assumptions are satisfied. G1.j rep-
resents genetic instruments used as proxy for
random treatment assignment. X represents expo-
sure of interest. Y represents outcome of interest. M
represents mediator of interest. U represents po-
tential unmeasured confounding. C represents total
causal estimates (univariable estimate when medi-
ator unaccounted for). C0 represents direct causal
estimate (multivariable estimate when holding the
mediator constant). a-path (X to M) * b-path (M to Y)
represents mediated path of X to Y via M. Solid ar-
rows represent observed causal effects in the di-
rection depicted by the arrowhead. Dashed arrows
represent potential directed relationships not fully
observed. For panel (A), dashed arrows from X to M
and M to Y represent the possibility of either an
active a-path or an active b-path but no significant
effect of both. This would be expected if there was
no difference between univariable (total) or multi-
variable (direct) estimates of X. For panel (B), a
dashed arrow from X to M represents an inactivation
of the C0 path when M is introduced via multivariable
models. C0 may be partially inactivated (reduced

tivated (complete loss of causal signal in C0 estimate) by the presence of M.
ausal effect is observed when switching X and Y as the exposure of interest.
as the mediator of interest. All models allow for unmeasured confounding
no G1.j to X confounding, 2) no direct G1.j-to-Y relationship, and 3) a robust

www.sobp.org/GOS
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large effect size for both AD (25) and lipid-related metabolites
(21), risking dominating and drowning out the wider polygenic
signal. For lipid-related metabolites associated with AD at p ,

.05 in PRS analyses, however, results were in the unexpected
direction (see Results; Figure 3). To investigate whether this
reflected APOE removal, PRS meta-analyses were recom-
puted for all metabolites significantly associated with AD at
p , .05 but with SNPs restricted to the APOE genomic region
only (chr19, bp 45786555-45037368). The quality control
pipeline followed that outlined for primary analyses in Figure 1,
with the exception of “APOE region SNPs removed.” PRS
analyses were then recomputed, restricting PTs to those
identified as each metabolite’s best threshold within primary
analyses (Table S7 in Supplement 2).

Information on further post hoc analyses can be found in
Supplementary Information I9 in Supplement 1.

RESULTS

Polygenic Association Between 34 Metabolites and
Alzheimer’s Disease

Following data preparation, 106 metabolites (Table S1 in
Supplement 2) and 4725 AD case-control samples
(GERAD1 = 3191, ADNI = 886, ANM = 648) (Table S8 in
Supplement 2) were taken forward for PRS. When meta-
analyzed, 34 metabolites were genetically associated with
AD at p , .05 (Figure 3; Table S7 in Supplement 2), and no
significant heterogeneity was evident (I2 , 0.5, Q-p . .05). No
PRS reached adjusted significance (a = 0.0002), but gluta-
mine came close at p = .0009 (se = 0.03, PT = 0.0001)
(Table S7 in Supplement 2). In the absence of associations
M.LDL.C, medium LDL total cholesterol; M.LDL.CE, medium LDL cholesterol es
particles; M.LDL.PL, medium LDL phospholipids; M.VLDL.P, medium VLDL con
small VLDL free cholesterol; S.VLDL.PL, small VLDL phospholipids; Serum.C, s
diameter; XL.HDL.FC, extra-large HDL free cholesterol; XS.VLDL.L, extra-sm
XS.VLDL.PL, extra-small VLDL phospholipids; XXL.VLDL.P, extra-extra-large VLD

Biological Psychiatry: Glob
meeting multiple testing thresholds, metabolites associated
with AD at the more liberal, conventional threshold of p , .05,
indicative of suggestive association, were taken forward for
causal analyses.

Protective Causal Effect of Glutamine and Free
Cholesterol in XL.HDLs on Alzheimer’s Disease

An adjusted a = 0.004 was computed for MR analyses
(Supplementary Information I6 in Supplement 1). Two
metabolites—glutamine and free cholesterol in XL.HDLs
(XL.HDL.FC)—demonstrated evidence of a small protective
causal effect on AD (glutamine: IVW odds ratio [OR], 0.80; p =
.002; XL.HDL.FC: IVW-OR, 0.83; p = .001) (Figure 4). Consis-
tent directionality was seen for both Egger and weighted me-
dian estimates, though lower precision of Egger resulted in
confidence intervals (CIs) crossing the null (Figure 4A). No
pleiotropy was evidenced by the Egger intercept, nor was
heterogeneity apparent (Table S9 in Supplement 2). MR–
Bayesian model averaging also corroborated, ranking
XL.HDL.FC and glutamine with the highest marginal inclusion
probability, indicative of being the strongest “true causal”
candidates of those analyzed (Table S19 in Supplement 2).
Both also represented the most frequent metabolites within
MR–Bayesian model averaging group models (Supplementary
Information I10 in Supplement 1, Table S20 in Supplement 2).
Leave-one-out analysis did, however, identify one outlier for
glutamine (rs2657879), the removal of which resulted in non-
significance (IVW-OR, 0.82; 95% CI, 0.62 to 1.10) (Figure S12
in Supplement 1). No other metabolite demonstrated evidence
of a causal association with AD, in either direction (Table S9
and S10 in Supplement 2, Figures S4 and S5 in Supplement 1).
Figure 3. Bar chart demonstrating the magnitude
of effect and meta-analyzed standard errors for
metabolite–Alzheimer’s disease cross-trait polygenic
score associations. Results are displayed for meta-
analyzed associations significant at p , .05. Meta-
analyzed coefficients are represented by blue bars.
Non–meta-analyzed coefficients are displayed in
gray hues for comparison. Metabolites are grouped
into metabolite families. ADNI, Alzheimer’s Disease
Neuroimaging Initiative; ANM, AddNeuroMed and
Dementia Case Register; Est.C, free-cholesterol-to-
esterified-cholesterol ratio; GERAD1, Genetic and
Environmental Risk in Alzheimer’s Disease; HDL,
high-density lipoprotein; IDL, intermediate-density
lipoprotein; IDL.C, IDL total cholesterol; IDL.FC, IDL
free cholesterol; IDL.L, IDL lipids; IDL.P, IDL con-
centration of particles; IDL.PL, IDL phospholipids;
IDL.TG, IDL triglycerides; LDL, low-density lipopro-
tein; L.LDL.C, large LDL total cholesterol; L.LDL.CE,
large LDL cholesterol esters; L.LDL.FC, large LDL
free cholesterol; L.LDL.L, large LDL lipids; L.LDL.P,
large LDL concentration of particles; L.LDL.PL, large
LDL phospholipids; LDL.C, LDL total cholesterol;

ters; M.LDL.L, medium LDL lipids; M.LDL.P, medium LDL concentration of
centration of particles; S.VLDL.C, small VLDL total cholesterol; S.VLDL.FC,
erum cholesterol; VLDL, very low-density lipoprotein; VLDL.D, VLDL mean
all VLDL lipids; XS.VLDL.P, extra-small VLDL concentration of particles;
L concentration of particles.
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Figure 4. Causal effects of glutamine and XL.HDL.FC. (A) Forest plot illustrating odds ratio point estimates and 95% CIs for the effect of glutamine (top
panel) and XL.HDL.FC (bottom panel) on AD in primary univariable analyses (blue bars) and secondary analyses (weighted median = dark gray hue, Egger =
light gray hue). (B) Causal diagram and 95% CIs from primary univariable MR of the causal effect of education on glutamine (top arrows) and of glutamine on
education (bottom arrow). (C) Causal diagram and 95% CIs from primary univariable MR of the causal effect of cognition on glutamine (top arrows) and of
glutamine on cognition (bottom arrow). (D) Causal diagram and 95% CIs from primary univariable MR of the causal effect of education on XL.HDL.FC (top
arrows) and of XL.HDL.FC on education (bottom arrow). (E) Causal diagram and 95% CIs from primary univariable MR of the causal effect of cognition on
XL.HDL.FC (top arrows) and of XL.HDL.FC on cognition (bottom arrow). Double helix icons represent genetic instrumental variables used in MR analyses.
Causal arrows and CIs are displayed in a grayed hue to represent the nonsignificant causal relationship observed across these variables, indicating no evi-
dence of shared causal pathways. AD, Alzheimer’s disease; CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization;
XL.HDL.FC, free cholesterol in extra-large high-density lipoprotein.
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Negative Causal Effect of Cognition on Lipid-
Related Metabolites

A nominally significant causal effect of cognition on 18 lipid-
related metabolites was observed. Metabolites belonged pri-
marily to the low-density lipoprotein (LDL) or very LDL (VLDL)
family (n = 11). All associations were in the negative direction
(Figure S6 in Supplement 1), indicating higher cognition may
result in lowered levels of these metabolites. However, no
estimate survived multiple testing and inconsistent direction-
ality was seen for 17 of the 18 metabolites in Egger analyses
(Table S11 in Supplement 2). No evidence of a causal effect in
the opposite direction (metabolite to cognition) was found
(Table S12 in Supplement 2).

Causal Association Between EA and Lipid-Related
Metabolites

A nominally significant causal effect of education on nine lipid-
related metabolites (Figure S7 in Supplement 1, Table S13 in
Supplement 2) was found. One metabolite, triglycerides in
intermediate-density lipoproteins (IDL.TGs), remained significant
at the adjusted level (p = .002). This effect was negative (IVW-
b = 20.18; 95% CI, 20.29 to 20.07), indicating that higher ed-
ucation results in lower IDL.TG. Directionality was consistent for
172 Biological Psychiatry: Global Open Science April 2022; 2:167–179
both Egger and weighted median, and no pleiotropy was evi-
denced by the Egger intercept (Table S13 in Supplement 2).

In the opposite direction, omega-3 fatty acids (FAu3) was
the only metabolite to demonstrate evidence of a causal effect
on education. This was in the positive direction, though the
magnitude of effect was small, and significance was at the
nominal level only (IVW-b = 0.02; 95% CI, 0.01 to 0.46; p = .04)
(Table S14 in Supplement 2). FAu3 was also one of nine me-
tabolites associated with education in the opposite direction
(IVW-b = 0.16; 95% CI, 0.02 to 0.30; p = .03). However, in-
strument heterogeneity was evident (Q-p = .01), and incon-
sistent directionality was observed for Egger (Table S13 in
Supplement 2).

Protective Causal Effect of Cognition and EA on AD,
With Bidirectional Mediation

Both education and cognition demonstrated evidence of a
negative causal association with AD (Figures S8 and S9 in
Supplement 1). These were both significant at the adjusted
level, indicating a protective effect (education: IVW-OR, 0.72;
95% CI, 0.61 to 0.84, p = 7.34 3 1025; cognition: IVW-OR,
0.73; 95% CI, 0.60 to 0.90, p = .002) (Table S15 in
Supplement 2). Sensitivity analyses demonstrated consistent
directionality for both Egger and weighted median. Wider CIs
www.sobp.org/GOS
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were observed for Egger estimates, but no pleiotropy was
indicated by the Egger intercept (Table S15 in Supplement 2).
Some instrument heterogeneity was evident for cognition (Q-
p = .01), though leave-one-out analysis identified no significant
change following per-instrument removal (Figures S14 and S15
in Supplement 1). No evidence of a causal effect in the
opposite direction was found (Table S16 in Supplement 2,
Figures S10 and S11 in Supplement 1).

A bidirectional causal relationship between cognition and
education was also observed (Figure 5A). This was larger in the
direction of education to cognition (education to cognition: IVW-
b = 0.67; 95% CI, 0.63 to 0.71; cognition to education: IVW-b =
0.30; 95% CI, 0.27 to 0.33) (Table S17 in Supplement 2).

MVMR also demonstrated evidence of bidirectional media-
tion between cognition and education with respect to their
effect on AD. Mediation via cognition was, however, stronger
than via education. More specifically, when cognition was
introduced into education-AD models, the causal estimate of
education on AD became smaller in magnitude (MV-IVW-OR,
0.84) and was no longer significant (p = .17), indicating total
mediation via cognition (Figure 5B; Table S18 in Supplement
2). While magnitude of the cognition-AD relationship also
dropped when introducing education (MV-IVW-OR, 0.81), the
direct effect of cognition retained nominal significance, indi-
cating only partial mediation via education (p = .049).

No Evidence of Mediation Between Metabolites and
Cognitive Factors on AD

Neither glutamine nor XL.HDL.FC demonstrated a causal as-
sociation with education or cognition (Figure 4B–E; Tables S12
and S14 in Supplement 2). Thus, the effect of both these
metabolites on AD was deemed independent of education and
cognition, with no MV model necessary. Similarly, while a
A

B
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number of suggestive associations between cognition and
metabolites were observed (see Causal Effect of Cognition on
Lipid-Related Metabolites), these were in the direction of
cognition to metabolite. As none of these metabolites
demonstrated a causal association with AD (Table S9 in
Supplement 2), a significant b-path required for mediation was
absent, and the effect of cognition on AD deemed independent
of these metabolites. There was one metabolite—FAu3—that
demonstrated suggestive evidence of contributing to
increased EA (Table S14 in Supplement 2). Investigating EA as
a mediator on the causal pathway from FAu3 to AD, however,
demonstrated no evidence of a mediating effect (Table S18 in
Supplement 2).

Post Hoc Analyses: Glutamine as a Protective
Analyte for AD

The Wald ratio was used to re-estimate the causal association
between glutamine and AD using only influential SNP
rs2657879 in an independent dataset (Table S21 in
Supplement 2) (43). Results corroborated primary analyses
with notably greater effect magnitude, though lower precision
(OR, 0.035; 95% CI, 0.003 to 0.381; p = .006) (Table S22 in
Supplement 2; Figure 6).

A PRS-informed subthreshold of 100 glutamine-associated
instruments (r2 = 0) significant at p , .0001 (rs2657879
excluded) (Table S23 in Supplement 2) also corroborated a
protective causal effect of glutamine, with comparable
magnitude to primary results (OR, 0.89; 95% CI, 0.81 to 0.98;
p = .0009) (Figure 6; Table S22 in Supplement 2).

Post Hoc Analyses: APOE

Of the 34 metabolites associated with AD at p , .05 in primary
PRS analyses, 30 were APOE-related lipid-subfractions
Figure 5. Bidirectional effects of intelligence and
educational attainment. (A) Causal diagram illus-
trating the univariable bidirectional relationship be-
tween education (left) and cognition (right). Double
helix icons on the far left and far right represent
genetic instrumental variables (1.j). U represents
unobserved confounding (allowable provided no
instrumental-variable-to-U relationship). The darker-
hued arrow confirms the causal estimate when x =
education and y = cognition. The lighter-hued arrow
confirms the causal estimate when x = cognition and
y = education. (B) Forest plot confirming the total
(univariable) causal estimate of education and
cognition on Alzheimer’s disease (AD) (darker hue)
and the mediated causal estimate of education on
AD when controlling for cognition and of cognition
on AD when controlling for education (lighter hue).
CI, confidence interval; IVW, inverse variance
weighted.
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Figure 6. Corroboration between primary, secondary, and post hoc estimates of glutamine on AD. (A) Scatterplot illustrating pooled per-instrument esti-
mates of the effect of glutamine on AD within primary IVW analyses (light blue slope) and secondary MR-Egger (dark blue slope) and weighted median (green
slope) analyses. For each instrument, 95% CIs are displayed for 1) SNP outcome estimates (vertical bars) and 2) SNP exposure estimates (horizontal bars).
Slopes across the three MR estimates indicate comparable protective causal estimates. Influential point rs2657879 is highlighted (far right). (B) Scatterplot
illustrating pooled per-instrument estimates for the effect of glutamine on AD within post hoc subthreshold analyses, with independent instruments (R2 = 0)
associated with glutamine at p , .0001 included in analyses (most predictive cross-trait polygenic risk scoring threshold when glutamine scoring models used
to predict AD). Slopes for IVW, Egger, and weighted median subthreshold estimates exclude the influential SNP rs2657879. (C) Directed acyclic graph and
corresponding causal estimate and 95% CIs for the effect of glutamine on AD within post hoc analyses using influential point rs2657879 as a single SNP
instrumental variable estimated using the Wald ratio, and in an independent dataset from Shin et al. (43). The far-left icon represents the genetic instrumental
variable, the middle icon represents glutamine as X, and the far-right icon represents AD as Y, with the downward arrow signifying a reduced effect of AD given
higher levels of glutamine. AD, Alzheimer’s disease; CI, confidence interval; IV, instrumental variable; IVW, inverse variance–weighted; MR, Mendelian
randomization; OR, odds ratio; SNP, single nucleotide polymorphism.
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(VLDLs = 9, LDLs = 11, IDLs = 7, HDLs = 1, cholesterols = 2)

(Table S7 in Supplement 2), and each of these demonstrated

associations in the unexpected direction (Figure 3).
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Reperforming PRS for these 30 metabolites, but restricting

SNPs to the APOE region, rectified directionality, with asso-

ciations matching that which would be expected based on
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wider literature. Statistical significance also greatly improved,
ranging from p = .001 (XL.HDL.FC) to p = 2 3 10259 (FC in
small VLDLs) (Table S24 in Supplement 2).

DISCUSSION

To our knowledge, this is the first study to triangulate knowl-
edge across PRS, UVMR, and MVMR to disentangle causal
relationships between blood metabolites, cognitive factors,
and AD. Polygenic scores allowed us to identify, from a wider
set of metabolites, those demonstrating plausible genetic
overlap with AD. MR then allowed us to interrogate both direct
and indirect causality, identifying two metabolites, glutamine
and XL.HDL.FC, as having direct AD-protective effects, inde-
pendent of EA or cognition. An AD-protective effect was also
confirmed for both education and cognition, though no evi-
dence of mediation via any of our metabolites was evident.
There was, however, bidirectional mediation confirmed be-
tween education and cognition, with the mediating effect of
cognition being strongest. In other words, education’s pro-
tective effect appears to work almost entirely through its
positive effect on cognition, and this, in turn, reduces AD risk.

Glutamine and AD

Glutamine demonstrated the strongest genetic overlap with
AD in cross-trait polygenic scoring. It was also one of two
metabolites demonstrating a causal effect on AD. Though
sensitivity analyses indicated glutamine’s causal estimate was
primarily driven by influential SNP rs2657879, post hoc ana-
lyses added weight to initial conclusions, corroborating pri-
mary findings. Glutamine also has biological relevance, as it is
critically implicated in neuronal transmission as part of the
glutamine-glutamate cycle (40,42) (Figure S3 in Supplement 1).
The leading view in literature is that glutamine is indeed AD
protective (45,46), though some positive associations, both
with AD and with lower cognition, have also been reported
(45,47). The small but statistically significant protective effect
found here adds weight to the former. Given glutamine’s
intrinsic link to glutamate, findings also implicitly implicate
glutamate in AD etiology. This assertion would align with wider
literature, which has indeed found a link between this metab-
olite and AD pathology (45). Unfortunately, glutamate was
unable to be interrogated directly within our study owing to its
nonavailability within Kettunen et al. (21), and while it was
available within a smaller GWAS (43), no genome-wide signif-
icant SNPs were identified. It will be an important endeavor to
incorporate this metabolite into future analyses once in-
struments of adequate power become available.

XL.HDL.FC and AD

As reported in our previous study (19), XL.HDL.FC demon-
strated a protective causal effect on AD. This aligns with wider
literature that consistently regards HDLs as health promoting,
while regarding LDLs and IDLs as their risk-increasing coun-
terparts (48–50). HDLs have been implicated in reduced
cognitive decline and AD more specifically (45,51), and hold
biological relevance, having shown evidence of protection
against neuroinflammation and cerebral amyloid angiopathy
(51). Interestingly, however, our PRS results painted a some-
what opposing picture to that of MR. Here, XL.HDL.FC was
Biological Psychiatry: Glob
found to have a positive AD-association, while all LDLs and
IDLs demonstrated negative associations. Expected direc-
tionality was recovered, however, in post hoc PRS that
restricted SNPs to only those within the APOE genomic region,
indicating that primary PRS results may, in part, reflect the
removal of APOE-related SNPs. A priori removal was neces-
sary owing to the risk of APOE’s unusually large effect size
(21,25) drowning out the wider polygenic signal. However,
evidence from post hoc results suggest that because APOE
largely dominates the genetic relationship between lipid sub-
fractions and AD, removal may bring to bear counterintuitive
associations that could bias conclusions if not properly inter-
rogated. This phenomenon may be particularly pertinent for
polygenic scores as opposed to MR, as PRS explicitly as-
sumes polygenicity, resulting in bias when such assumptions
do not hold, such as in the presence of unconventionally large
effects (52). While it is outside the scope of the current study, it
will be interesting to expand on the genetic associations
observed here and further investigate the polygenic relation-
ship between these metabolites and AD on the basis of, and
interactions with, APOE status.

Three additional HDL subfractions, as well as one marker of
inflammation—glycoprotein acetyls—demonstrated AD causal
associations within our previous study (19). These were not
estimated here owing to their lack of AD polygenic overlap.
This highlights the importance of adopting an expanded
repertoire of screening methods for identifying causal candi-
dates, with previous selection based on phenotypic associa-
tions with midlife cognition (19) as opposed to genetic overlap
with AD-specific diagnosis, as was done here.

Cognitive Factors and AD

A strong bidirectional causal relationship was observed be-
tween education and cognition, indicating a causal feedback
loop. In line with this, both education and cognition demon-
strated a total (nonmediated) protective effect on AD, with
similar magnitudes of effect. Additionally, when the direct ef-
fect for each was measured with consideration of the other,
evidence of bidirectional mediation was present. However,
while cognition was only partially mediated by education, the
independent effect of education was entirely attenuated by
education, suggesting that education’s protective effect on AD
is working via its positive effect on cognition. These results
mirror findings from a recent study (5) using smaller-scaled
data from 1) Lambert et al. (53) for AD, 2) Okbay et al. (54)
for education, and 3) Hill et al. (55) for cognition. Here, too, a
bidirectional relationship between education and cognition,
and a mediating effect of cognition on the education-AD
relationship, was found (5). To our knowledge, ours is the
first study to successfully replicate these 2020 findings on
larger, independent data.

Cognitive Factors and Metabolites

Evidence was found for education causing lower levels of
IDL.TG. This causal association was the only to survive mul-
tiple testing when investigating cognitive factors and metab-
olites. IDLs lie between LDLs and VLDLs, and therefore most
closely resemble a family of metabolites consistently associ-
ated with adverse vascular outcomes (56–59). Similarly, higher
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triglyceride levels have been implicated in poor neurocognitive
outcomes (60–62) and have previously shown associations
with dementia (63). Interestingly, while our results indicated
that education may reduce levels of this potentially harmful
metabolite, there was no evidence that this translated through
to either cognition or later AD. Considering the magnitude of
education’s effect on IDL.TGs, it may be that its small effect is
not of large enough magnitude to then translate through to a
detectable indirect effect on subsequent cognition. As edu-
cation’s effect on AD is totally mediated by cognition, this
would mean that any indirect effect of IDL.TGs on AD would
not be observed owing to the absent IDL.TG-cognition path.
Alternatively, such results may reflect power, as many more
instruments were available for both education (n = 277) and
cognition (n = 133) relative to metabolites (maximum: n = 15;
IDL.TG: n = 12). For lipid-related metabolites such as IDL.TG, a
large proportion of genetic signal was also removed through
exclusion of APOE-related instruments. This was necessary
owing to known pleiotropy (32). However, coupled with low
instrumental variable numbers to begin with, this likely atten-
uated detectable causal signals. Inferences regarding the
extent of IDL.TG’s impact on cognition and AD should there-
fore remain conservative until larger-powered samples
become available.

Several additional causal associations were observed but
failed to survive multiple testing. We advise caution in over-
interpreting these and thus refrain from discussing them here.
A brief interpretation can, however, be found in Supplementary
Information I11 in Supplement 1.
Limitations

Metabolites studied here were limited to those available within
the GWAS literature. As a result, only 123 were available for
investigation. The human metabolome is estimated to contain
over 250,000 metabolites (64). The extent to which we have
captured all relevant metabolic mechanisms within our study
therefore remains doubtful. Moreover, of those that were
studied, quantification relied on nuclear magnetic resonance
spectroscopy, a method with limited specificity relative to
alternative methods such as mass spectrometry. It is worth
noting that GWAS data for a larger number of mass
spectrometry–quantified metabolites (N z 400) were available
at the time of study (43). However, sample power (N z 7824)
lagged considerable behind data used within our study (N z
24,925), resulting in fewer available instrumental variables. This
alternative dataset did, however, provide an accessible inde-
pendent dataset for post hoc interrogation of an influential
point identified for glutamine. Moreover, while breadth and
specificity were suboptimal in our selected study data (21), key
metabolites previously implicated in cognition, cognitive
decline, and dementia were indeed present.

Throughout analyses, AD was also quantified using a binary
diagnostic measure. However, AD clinical manifestations
become apparent only after a long symptom-free prodromal
period (65). It remains plausible, therefore, that our clinical
phenotype contains noise, with prodromal AD cases incor-
rectly classified among controls. It is worth noting that an
attempt to avoid such noise was made throughout. For PRS, a
conservative age-matched cutoff of 70 years across all
176 Biological Psychiatry: Global Open Science April 2022; 2:167–179
samples was implemented to avoid contamination where
possible. For MR, our smaller GWAS of clinically diagnosed
individuals was selected over a larger alternative dataset of
AD-by-proxy samples, in which diagnosis was derived from
self-reported parental dementia, a phenotype of lower speci-
ficity (7). Nonetheless, quantification of the AD phenotype,
rather than relying on potentially erroneous diagnostic
boundaries, should be sought in future studies to improve
signal to noise. This could be achieved using an endopheno-
type approach or through use of existing imaging or cerebro-
spinal fluid biomarkers (66–68) as proxies for AD status.

Summary

Combining knowledge across polygenic scores, MVMR, and
UVMR, our results identified two blood metabolites—
glutamine and XL.HDL.FC—with evidence of protective ef-
fects on AD. The biological mechanisms underpinning the
relationship between education, cognition, and AD remain
elusive, with no evidence of mediation via any of our metab-
olites. However, the effect of education on AD was shown to
be almost entirely driven by cognition, implying that methods
aimed at increasing cognition either indirectly through educa-
tion or directly via brain training could hold protective utility
against AD risk. Disentangling wider, multimodal risk factors
and understanding how these connect along the AD causal
pathway will be an important future endeavor if we hope to
appropriately inform treatment strategies. This study provides
some important, initial pieces to this causal puzzle, offering
biological and nonbiological sources of insight to feed into
wider multimodal work.
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