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Abstract

Background: There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer’s disease (AD) in
the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information
Framework for Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe
the design of the study, the methods used and the characteristics of the participants.

Methods: Participants were selected from existing prospective multicenter and single-center European studies.
Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type
dementia at baseline, age above 50 years, known amyloid-beta (Aβ) status, availability of cognitive test results and
at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF).
Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted
proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation
profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics
were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling.

Results: We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n= 202) with a mean age of 67.9
(SD 8.3) years. The percentage Aβ+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups.
Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%)
subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each
diagnostic group, the APOE ε4 allele was more frequent amongst Aβ+ individuals (p < 0.001). Only in MCI was there a
difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p< 0.001). Aβ+ had a faster
rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups.
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Conclusions: The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central
roles of Aβ and APOE ε4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into
underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can
apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.

Keywords: Alzheimer’s disease, Biomarkers, Multimodal, Proteomics, Genomics, Metabolomics, Plasma, Magnetic
resonance imaging, DNA, Cerebrospinal fluid,

Background
Over the last decade great progress has been made in
diagnosing Alzheimer’s disease (AD) at an early disease
stage, including before the onset of dementia [1, 2]. The
biomarkers amyloid-beta (Aβ) and tau in cerebrospinal
fluid (CSF) or amyloid and tau load via positron emission
tomography (PET) have become indispensable in the AD
research field, especially as part of clinical trials for disease
modification and secondary prevention [3–6]. Nonethe-
less, a better understanding of the underlying patho-
physiological disease mechanisms as well as the discovery
of diagnostic and prognostic markers that are inexpensive
and minimally invasive to obtain would enhance the de-
velopment of therapeutic interventions.
Currently, CSF and PET biomarkers are commonly used

for the early diagnosis and prognosis of AD [7–9]. How-
ever PET imaging is fairly expensive and not universally
available and the procedure for obtaining a PET scan as
well as CSF data are relatively invasive. Given this, comple-
menting these highly specific biomarker modalities with
markers in more readily accessible biofluids would mark
an important step forward. Consequently, many initiatives
have been undertaken to discover and validate blood-based
biomarkers for AD pathology [10, 11], but so far results
have been limited, due to small sample sizes, single modal-
ity analyses or other methodological issues [12]. One crit-
ical issue so far has been the design (comparing individuals
with AD-type dementia with controls), which made the
studies unsuitable for discovery of markers for the preclin-
ical disease phase. To seek markers for the preclinical
phase, a more sensitive and gradual approach has been
proposed, described as the “endophenotype approach”
where discovery is predicted on a measure of pathology
[13]. Therefore, we designed the current study to enhance
blood-based biomarker discovery by performing a series of
omics techniques (e.g., proteomics, metabolomics, genom-
ics) in a large cohort across the AD clinical disease
spectrum, using an endophenotype approach.
This study was performed as a part of the European

Medical Information Framework for Alzheimer’s disease
(EMIF-AD; http://www.emif.eu). Funded through the In-
novative Medicines Initiative (IMI), the EMIF project
was established to facilitate the process of reusing and
combining existing healthcare data with a focus on two

therapeutic areas in the first instance: metabolic diseases
and AD. One of the main aims of the EMIF-AD project
is to accelerate the discovery of novel diagnostic and
prognostic biomarkers for AD and to unravel the under-
lying pathophysiological mechanisms, using existing data
and existing samples, that would otherwise be inaccess-
ible to research beyond the project teams responsible for
the collection. In this report, we will describe the set-up
of the EMIF-AD Multimodal Biomarker Discovery
(EMIF-AD MBD) study, the methods as well as the
characteristics of the included subjects. The results of
the single and multimodal analyses will be described in
future publications.

Methods
General outline
In the EMIF-AD MBD study we retrospectively combined
and reused clinical data, samples and scans that had already
been collected as part of existing prospective cohort studies.
We aimed to include a total of 1000 subjects across the
clinical AD spectrum: 400 subjects with normal cognition
(NC), 400 subjects with mild cognitive impairment (MCI)
and 200 subjects with mild AD-type dementia. To create a
balanced design in terms of progression and to enable
endophenotype designed biomarker studies, we intended to
include 50% Aβ-positive (Aβ+) individuals and 50%
Aβ-negative (Aβ–) individuals in the groups with NC and
MCI. To conduct multimodal analyses, we initially aimed
to include subjects who had material from MRI, plasma,
DNA and CSF. Later, we adjusted this to subjects with
material available in at least two of the modalities listed.

Selection of cohorts
We used the EMIF-AD Catalog (https://emif-catalo-
gue.eu), established as part of the objective of the EMIF
which seeks to enable the finding, assessment and
reutilization of preexisting data. The EMIF-AD Catalog
contains metadata about European AD cohorts, enabling
the selection of studies that included subjects who, in this
instance, met the following inclusion criteria: data on Aβ
status, measured in CSF or by amyloid positron emission
tomography (PET); age above 50 years at baseline; and
availability of MRI scans, plasma and DNA samples. We
identified 16 suitable cohorts. Two cohorts declined due
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to other research interests. Three cohorts were interested
to collaborate, but unable because of legal and/or ethical
restrictions, or unavailability of sufficient sample volumes.
The 11 selected cohorts included three multicenter stud-
ies—EDAR (n = 204) [14], PharmaCog (n = 147) [15] and
DESCRIPA (n = 29) [16]—and eight single centers: Ant-
werp (n = 149) [17], Amsterdam (n = 172) [18], Barcelona
Sant Pau (n = 45) [19], Barcelona IDIBAPS (n = 120) [20],
Leuven (n = 180) [21], San Sebastian GAP (n = 40) [22],
Gothenburg (n = 95) [23] and Lausanne (n = 40) [24]. Of
these 11 cohorts, DESCRIPA, EDAR, PharmaCog,
Amsterdam, Antwerp and Gothenburg were linked to
partners in the EMIF-AD, while the other five cohorts
participated as affiliated data providers (ADP). All cohorts
(e.g., partners and ADP) signed a material transfer
agreement. The ADP also agreed to the EMIF project
agreement. Study managers from each cohort selected the
subjects based on the following criteria: age above 50 years
at baseline; availability of Aβ status at baseline measured
in CSF or via PET; availability of neuropsychological and
clinical data; availability of at least two of the following ma-
terials: MRI scan, plasma sample, DNA samples or CSF
sample; and absence of neurological, psychiatric or som-
atic disorders that could cause cognitive impairment. The
local medical ethical committee in each center approved
the study. Subjects had already provided written informed
consent at the time of inclusion in the cohort for use of
data, samples and scans. Figure 1 shows a timeline of the
different events in establishing this cohort, from the
search in the EMIF Catalog to the wet-lab analyses.

Baseline diagnoses
In all cohorts, the definition for NC was a normal perform-
ance on neuropsychological assessment (within 1.5 SD of
the average for age, gender and education). Five cohorts
also used a score of 0 on the Clinical Dementia Rating

(CDR) [25] and a single cohort used a cutoff value < 3 on
the Global Deterioration Scale [26] to determine NC.
Diagnosis of MCI was made according to the criteria of
Petersen [27] in nine cohorts. Two cohorts used the Win-
blad et al. criteria [28] to diagnose MCI. All cohorts used
the National Institute of Neurological and Communicative
Disorders and Stroke–Alzheimer’s Disease and Related
Disorders Association criteria (NINCDS-ADRDA) criteria
[29] to diagnose AD-type dementia. Additional file 1:
Table S1 presents the diagnostic criteria used per center.

Clinical data
All cohorts were asked to contribute available data on
demographics, clinical information, neuropsychological
testing and Aβ status, as presented in Table 1. Medication
use and comorbidities were classified into a number of
categories, for which we created dichotomous variables
(Table 1).
Cognitive data were collected in all cohorts. The cogni-

tive tests used varied across centers. Only the Mini Mental
State Examination (MMSE) was administered in all cen-
ters and was available for nearly all subjects (n = 1216).
We requested at least one test from the following cogni-
tive domains: memory, language, attention, executive
functioning and visuoconstruction [16]. For each cognitive
domain, we selected a primary test (Table 1). If the pre-
ferred tests were not available, we selected an alternative
priority test from the same cognitive domain. Additional
file 2: Table S2 provides an overview of the different tests
used for each cognitive domain. For each test, we re-
quested the raw scores and, if available, z-scores calculated
based on local normative data. If local normative data
were unavailable, we calculated z-scores based on
published normative data from healthy controls for that
test. Per cognitive domain, we combined z-scores which

Fig. 1 Timeline of events related to the EMIF-AD MBD study
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we used as a continuous variable, and we used a cutoff
value of z-score < − 1.5 to define abnormality.
Clinical data were harmonized, pooled and stored on

an online data platform using tranSMART [30], now
enriched for dementia research purposes through the
EMIF-AD project.

Plasma analyses
Initially, the minimum requested amount of plasma was
0.7 ml. If available, another 0.7 ml was requested to

conduct additional analyses in a subgroup of subjects. In
some cases, only 0.5 ml was available. Prior to the ana-
lyses, samples were checked visually for consistency and
volume. Results of analyses were also quality checked by
inspecting patterns of outliers, and excluding consistent
outliers across analyses. Analyses conducted on these
samples include: targeted analyses of plasma proteins
identified previously [31] and confirmed in at least one
replication study, a panel of complement proteins
nominated because of increasing evidence from genom-
ics of the role of innate immunity in AD and analysis of
plasma neurofilament light (NFL) chain; untargeted
proteomic analyses using aptamer capture approaches;
and untargeted and targeted metabolic analyses using a
883-metabolite panel for the targeted assay.

Genetic analyses
A total amount of 2.6 μg DNA or 1 ml whole blood, from
which DNA was to be extracted, was requested for the gen-
etic analyses. After performing routine quality checks on
extracted DNA (e.g., agarose gel electrophoresis, determin-
ation of A260/280 and A260/230 ratios, PicoGreen quanti-
fication), we performed three types of assessments on each
sample passing quality control: genome-wide SNP genotyp-
ing (Global Screening Array; Illumina, Inc.), genome-wide
DNA methylation profiling (Infinium MethylationEPIC
BeadChip; Illumina, Inc.) and whole exome sequencing.

CSF analyses
The requested amount of CSF to conduct all planned
analyses was 0.4 ml, which was used for untargeted prote-
omic and peptidomic analyses, and a number of targeted
analyses measuring concentrations of Aβ38, Aβ40, Aβ42,
Aβ42/40, YKL-40, NFL and neurogranin (Ng). Prior to the
analyses, CSF samples were checked visually for volume
and absence of blood contamination.

MRI analyses
MRI scans were assembled centrally, quality checked and
assessed visually by a single rater. T1-weighted and, when
available, FLAIR and/or T2*/SWI images were used for
qualitative visual rating, including medial temporal lobe
atrophy [32], global cortical atrophy [33], white matter
hyperintensities [34] and microbleeds (defined as small (<
10 mm) round foci of hypointense signal in brain
parenchyma). 3D T1 scans were uploaded to the Neurgrid
platform (https://neugrid4you.eu) [35] for storage and au-
tomated quantitative analyses. Volumetric analysis
included assessment of hippocampal and whole brain
volume and cortical thickness.

Amyloid classification
Aβ status was defined by the CSF Aβ42/40 of the central
analyses, using a cutoff value of < 0.061 to determine

Table 1 Clinical dataset

Demographics

Age

Gender

Years of education

Clinical information

Diagnosis

Medication use

Cardiovascular medication

Dementia medication

Hormonal medication

Psychopharmaceuticals

Other medication

Comorbidities

Cardiovascular disorders

Cardiovascular risk factors

Cerebrovascular disorders

Endocrine disorders

Neurological disorders

Other cardiac disorders

Psychiatric disorders

Somatic disorders

Family history of dementia

First-degree relatives

Second-degree relatives

Functional impairment rating

Neuropsychological tests

Memory, preferred test: AVLT

Language, preferred test: animal fluency

Attention, preferred test: Trail Making Test A

Executive functioning, preferred test: Trail Making Test B

Visuoconstruction, preferred test: Rey complex figure copy

Aβ measurea

CSF Aβ42 value and local cutoff point

Amyloid PET SUV and local cutoff point
aAt least one Aβ measure
Aβ amyloid-beta, AVLT Auditory Verbal Learning Test, CSF cerebrospinal fluid,
PET positron emission tomography, SUV standardized uptake value

Bos et al. Alzheimer's Research & Therapy  (2018) 10:64 Page 4 of 9

https://neugrid4you.eu


abnormality (n = 770). The cutoff value for the Aβ42/40
ratio was determined based on mixture model analyses
comparing the NC and AD groups in this dataset. When
no CSF was contributed for central analyses, the local
CSF Aβ42 value (n = 271) or the standardized uptake
value ratio (SUVR) on an amyloid PET scan (n = 180)
with local cutoff values to determine abnormality were
used (Additional file 3: Table S3).

Statistical analyses
Baseline characteristics were compared between groups
using ANOVA for continuous variables and chi-square for
categorical variables. General linear mixed models with
random intercepts and slopes by study were used to exam-
ine the influence of Aβ status on MMSE performance and
decline over time, adjusted for age, gender and years of
education. Missing values for APOE genotype (n = 12) and
years of education (n = 105) were imputed using regression
within study with at least two significant predictors (i.e.,
age, gender, MMSE, etc.). Statistical analyses were per-
formed using R Statistical Software (version 3.3.3) and SPSS
(version 24), with significance defined as p < 0.05.

Results
We initially sought to identify 1000 individuals with data
available in all modalities. However, because not all studies
could contribute data for all modalities, we included more
participants to meet the aimed number of individuals for
each modality. In total, 1221 subjects were included in the
study, with a mean age of 67.9 (SD 8.3) years. Six hundred
and sixty-seven (54%) were female and the average educa-
tion level was 11.7 (SD 4.1) years. At baseline, 492 (40%)

subjects had NC, 527 (43%) subjects had a diagnosis of
MCI and 202 (17%) subjects had a clinical diagnosis of
AD-type dementia. For 758 (62%) individuals there were
follow-up data available (e.g., at least a clinical diagnosis
or MMSE at follow-up): 217 (44%) NC subjects, 398
(76%) MCI subjects and 143 (71%) demented subjects.
The average follow-up time for all 758 individuals was 2.3
(SD 1.2) years. Per diagnostic groups, the average clinical
follow-up time was: NC 2.4 (SD 0.9) years, MCI 2.2 (SD
1.3) years and AD 2.2 (SD 1.4) years.
Table 2 presents the baseline characteristics of the

sample by Aβ status and by baseline diagnosis. In the
NC and MCI groups, the Aβ+ subjects were older than
the Aβ– subjects (NC, p = 0.002; MCI, p < 0.001). In all
diagnostic groups, Aβ+ subjects were more likely to be
an APOE ε4 carrier (all p < 0.001). In the MCI subjects
only, there was a difference in baseline MMSE score
between the Aβ groups (p = 0.001). Regarding cognitive
domains, we found differences in memory (p < 0.001)
and executive functioning (p = 0.042) z-scores in individ-
uals with MCI. In individuals with AD-type dementia we
found that Aβ+ individuals performed worse on an
executive functioning task (p = 0.013).
Table 3 presents the number of subjects per modality

by diagnostic category. Plasma samples were contrib-
uted for 1189 (97%) subjects, DNA for 929 (76%)
subjects, MRI scans for 862 (71%) subjects and CSF for
770 (63%) subjects. There were 482 (40%) subjects who
contributed material in all modalities. Of this sub-
sample, 89 (18%) subjects had NC, 318 (66%) subjects
MCI and 75 (16%) subjects had a diagnosis of AD-type
dementia at baseline.

Table 2 Baseline characteristics by clinical diagnosis and Aβ status

Normal cognition MCI AD-type dementia

Aβ– Aβ+ Aβ– Aβ+ Aβ– Aβ+

Total n n = 365 n = 127 n = 220 n = 307 n = 27 n = 175

Age (years) 1221 64.4 (7.6) 66.9 (7.9)** 68.3 (8.2) 70.7 (7.4)*** 73.0 (8.4) 69.9 (8.8)

Female, n 1221 203 (56) 66 (52) 108 (49) 172 (56) 12 (44) 96 (55)

Education (years) 1221 13.5 (3.7) 12.7 (4.0)* 10.6 (3.8) 10.8 (3.7) 8.5 (4.4) 10.6 (3.8)**

APOE ε4 carrier, n 1221 122 (33) 76 (60)*** 46 (21) 200 (65)*** 7 (26) 114 (65)***

Mean follow-up time (years) 758 2.3 (0.8) 2.5 (1.1) 2.2 (1.3) 2.2 (1.3) 1.7 (0.9) 2.2 (1.4)

MMSE score 1215 28.9 (1.1) 28.8 (1.2) 27.0 (2.3) 25.9 (2.7)*** 21.5 (5.4) 21.7 (4.6)

Memory delayed z-score 1049 0.1 (1.1) 0.0 (1.2) −0.9 (1.3) −1.4 (1.4)*** −2.2 (1.2) −2.4 (1.1)

Language z-score 1181 −0.2 (1.0) −0.1 (1.0) − 0.7 (1.2) − 1.0 (2.0) − 1.9 (1.2) − 2.3 (2.4)

Attention z-score 1128 0.3 (1.1) 0.2 (0.9) −1.0 (1.8) −1.0 (1.8) −2.1 (2.5) −2.1 (2.0)

Executive functioning z-score 976 0.3 (1.1) 0.1 (1.1) −0.9 (1.9) −1.4 (2.1)* −1.2 (2.5) −3.4 (2.8)*

Visuoconstruction z-score 664 0.2 (1.4) 0.2 (0.8) −0.3 (1.7) −0.4 (1.8) −2.1 (2.4) −1.3 (2.0)

Results are mean (standard deviation) for continuous variables or frequency (%) for dichotomous variables
Aβ amyloid-beta, AD Alzheimer’s disease, APOE apolipoprotein E, MCI mild cognitive impairment, MMSE Mini Mental State Examination
*p < 0.05 in comparison to Aβ– group
**p < 0.01in comparison to Aβ– group
***p < 0.001 in comparison to Aβ– group

Bos et al. Alzheimer's Research & Therapy  (2018) 10:64 Page 5 of 9



Table 4 and Fig. 2 show the effect of Aβ on MMSE
scores over time for each diagnostic group, adjusted for
demographics. At baseline, there is only a difference in
MMSE for the MCI group (p < 0.001). In the NC and MCI
groups, the Aβ+ individuals in the NC and MCI groups

decline at a faster rate than the Aβ– individuals (NC, p <
0.001; MCI, p < 0.001). For the demented subjects, Aβ did
not influence the rate of decline (Table 4, Fig. 2).

Discussion
The aim of the EMIF consortium is to enable the
reutilization of preexisting data including the finding and
assessment of relevant datasets and facilitation of their
interoperability and reuse. For the EMIF-AD component, a
major use-case objective has been to use the processes and
tools established in the consortium to generate a novel
cross-cohort data and sample collection for the discovery
and validation of biomarkers for use in clinical trials using
a multimodal and endophenotype design. The first results
presented in this report confirm the central roles of Aβ and
APOE ε4 in the pathogenesis of AD, which is consistent
with findings from other large cohorts [36, 37]. The mo-
lecular studies are ongoing and will be reported in future
publications.
AD is a complex and multifactorial disorder, which un-

derscores the need for multimodal studies with sufficient
statistical power [38]. To date these large studies are
scarce, especially those including subjects across the whole
clinical AD spectrum. To our knowledge, the only other
large-scale studies that collected plasma, DNA, CSF and
imaging material from individuals in various cognitive
stages are the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [36] and the Australian Imaging, Biomarkers and
Lifestyle (AIBL) study of aging [37] studies. Since these
datasets are so unique, findings from these studies are
difficult to validate. The current study will not only be of
great additional value due to its explorative nature and
complementary laboaratory analyses, but also because
previous findings can be validated in a large-size cohort
with multimodal data. We collected a wide variety of clin-
ical variables including neuropsychological tests, comor-
bidities, medication use and psychiatric questionnaires.
All of the clinical data and results from the multimodal
wet-lab analyses will be stored on an online, secure data
platform (tranSMART). Research proposals can be sub-
mitted via the EMIF-AD Catalog (https://emif-catalo-
gue.eu) to work with these data, which require approval
from the EMIF-AD team and the data-owners.
Besides the major advantages, this study also has some

limitations. Currently, we do not have clinical follow-up
data for all subjects, as some centers are still in the process
of collecting these. However, these data may be added to
the database in the future. Also, the data, samples and scans
contributed to this study were collected at different centers
and were not collected using the same protocol, which will
lead to preanalytical variability. To limit this variability, the
samples were analyzed centrally and the clinical data were
harmonized using standardized values and dichotomous
variables.

Table 3 Number of subjects from different cohorts for each
modality by diagnosis

Cohort Diagnosis Clinical data Plasma DNA MRI CSF

Amsterdam NC 30 29 26 30 30

MCI 82 80 68 82 82

AD-type dementia 60 60 53 60 60

Antwerp MCI 103 100 101 50 103

AD-type dementia 46 47 46 0 46

DESCRIPA NC 12 12 8 5 12

MCI 17 17 12 9 17

EDAR NC 48 47 42 14 47

MCI 77 75 65 24 75

AD-type dementia 79 78 69 19 76

GAP NC 40 40 40 38 40

Gothenburg NC 49 48 – 48 –

MCI 46 44 – 46 –

IDIBAPS NC 76 77 – 40 –

MCI 27 27 – 14 –

AD-type dementia 17 16 – 14 –

Lausanne NC 12 12 12 12 12

MCI 28 28 28 27 28

Leuven NC 180 163 168 179 –

PharmaCog MCI 147 144 146 147 147

Sant Pau NC 45 45 45 – –

Total NC 492 473 341 366 141

MCI 527 515 420 399 452

AD-type dementia 202 201 168 100 182

Overall 1221 1189 929 865 775

CSF cerebrospinal fluid, DESCRIPA development of screening guidelines and
clinical criteria for predementia Alzheimer's disease, EDAR beta amyloid
oligomers in the early diagnosis of AD and as a marker for treatment reponse,
GAP gipuzkoa Alzheimer project, IDIBAPS institut d'investigacions biomèdiques
August Pi i Sunyer, MCI mild cognitive impairment, MRI magnetic resonance
imaging, NC normal cognition

Table 4 Effect of Aβ on MMSE scores over time by diagnostic
group

Diagnosis n Baseline p value Slope p value

NC 482 − 0.35 ± 0.20 0.170 − 0.60 ± 0.13 < 0.001

MCI 459 − 1.56 ± 0.24 < 0.001 − 0.60 ± 0.14 < 0.001

AD dementia 162 − 0.05 ± 1.05 0.965 − 0.21 ± 0.64 0.742

Numbers are linear mixed-model coefficients ± standard error, relative to the
Aβ– group, adjusted for age, gender and years of education
Aβ amyloid-beta, AD Alzheimer’s disease, MCI mild cognitive impairment,
MMSE Mini Mental State Examination, NC normal cognition
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Conclusion
The various complementary analyses conducted in
plasma, DNA and CSF and on MRI scans in a large-sized
cohort of individuals across the clinical AD spectrum
provide a unique opportunity to discover novel diagnostic
and prognostic markers, and will also increase knowledge
into the AD pathophysiology, which is required for the
development of novel therapeutic interventions.
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