174 research outputs found

    On the scaling of entropy viscosity in high order methods

    Full text link
    In this work, we outline the entropy viscosity method and discuss how the choice of scaling influences the size of viscosity for a simple shock problem. We present examples to illustrate the performance of the entropy viscosity method under two distinct scalings

    Nonlinear dynamo in a short Taylor-Couette setup

    Full text link
    It is numerically demonstrated by means of a magnetohydrodynamics code that a short Taylor-Couette setup with a body force can sustain dynamo action. The magnetic threshold is comparable to what is usually obtained in spherical geometries. The linear dynamo is characterized by a rotating equatorial dipole. The nonlinear regime is characterized by fluctuating kinetic and magnetic energies and a tilted dipole whose axial component exhibits aperiodic reversals during the time evolution. These numerical evidences of dynamo action in a short Taylor-Couette setup may be useful for developing an experimental device

    Electromagnetic induction in non-uniform domains

    Full text link
    Kinematic simulations of the induction equation are carried out for different setups suitable for the von-K\'arm\'an-Sodium (VKS) dynamo experiment. Material properties of the flow driving impellers are considered by means of high conducting and high permeability disks that are present in a cylindrical volume filled with a conducting fluid. Two entirely different numerical codes are mutually validated by showing quantitative agreement on Ohmic decay and kinematic dynamo problems using various configurations and physical parameters. Field geometry and growth rates are strongly modified by the material properties of the disks even if the high permeability/high conductivity material is localized within a quite thin region. In contrast the influence of external boundary conditions remains small. Utilizing a VKS like mean fluid flow and high permeability disks yields a reduction of the critical magnetic Reynolds number for the onset of dynamo action of the simplest non-axisymmetric field mode. However this decrease is not sufficient to become relevant in the VKS experiment. Furthermore, the reduction of Rm_c is essentially influenced by tiny changes in the flow configuration so that the result is not very robust against small modifications of setup and properties of turbulence

    Remarks on the stability of the Navier-Stokes equations supplemented with stress-free boundary conditions

    Full text link
    The purpose of this note is to analyze the long term stability of the Navier-Stokes equations supplemented with the Coriolis force and the stress-free boundary condition. It is shown that, if the flow domain is axisymmetric, spurious stability behaviors can occur depending whether the Coriolis force is active or not

    Nonlinear dynamo action in a precessing cylindrical container

    Get PDF
    It is numerically demonstrated by means of a magnetohydrodynamics (MHD) code that precession can trigger the dynamo effect in a cylindrical container. This result adds credit to the hypothesis that precession can be strong enough to be one of the sources of the dynamo action in some astrophysical bodies.Comment: 5 pages, 5 figures including subfigure

    Dynamo action in finite cylinders

    Get PDF
    see pdf fil

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier–finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results

    A spherical shell numerical dynamo benchmark with pseudo vacuum magnetic boundary conditions

    Get PDF
    It is frequently considered that many planetary magnetic fields originate as a result of convection within planetary cores. Buoyancy forces responsible for driving the convection generate a fluid flow that is able to induce magnetic fields; numerous sophisticated computer codes are able to simulate the dynamic behaviour of such systems. This paper reports the results of a community activity aimed at comparing numerical results of several different types of computer codes that are capable of solving the equations of momentum transfer, magnetic field generation and heat transfer in the setting of a spherical shell, namely a sphere containing an inner core. The electrically conducting fluid is incompressible and rapidly rotating and the forcing of the flow is thermal convection under the Boussinesq approximation. We follow the original specifications and results reported in Harder & Hansen to construct a specific benchmark in which the boundaries of the fluid are taken to be impenetrable, non-slip and isothermal, with the added boundary condition for the magnetic field <b>B</b> that the field must be entirely radial there; this type of boundary condition for <b>B</b> is frequently referred to as ‘pseudo-vacuum’. This latter condition should be compared with the more frequently used insulating boundary condition. This benchmark is so-defined in order that computer codes based on local methods, such as finite element, finite volume or finite differences, can handle the boundary condition with ease. The defined benchmark, governed by specific choices of the Roberts, magnetic Rossby, Rayleigh and Ekman numbers, possesses a simple solution that is steady in an azimuthally drifting frame of reference, thus allowing easy comparison among results. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement among codes
    • 

    corecore