Kinematic simulations of the induction equation are carried out for different
setups suitable for the von-K\'arm\'an-Sodium (VKS) dynamo experiment. Material
properties of the flow driving impellers are considered by means of high
conducting and high permeability disks that are present in a cylindrical volume
filled with a conducting fluid. Two entirely different numerical codes are
mutually validated by showing quantitative agreement on Ohmic decay and
kinematic dynamo problems using various configurations and physical parameters.
Field geometry and growth rates are strongly modified by the material
properties of the disks even if the high permeability/high conductivity
material is localized within a quite thin region. In contrast the influence of
external boundary conditions remains small. Utilizing a VKS like mean fluid
flow and high permeability disks yields a reduction of the critical magnetic
Reynolds number for the onset of dynamo action of the simplest non-axisymmetric
field mode. However this decrease is not sufficient to become relevant in the
VKS experiment. Furthermore, the reduction of Rm_c is essentially influenced by
tiny changes in the flow configuration so that the result is not very robust
against small modifications of setup and properties of turbulence