It is numerically demonstrated by means of a magnetohydrodynamics code that a
short Taylor-Couette setup with a body force can sustain dynamo action. The
magnetic threshold is comparable to what is usually obtained in spherical
geometries. The linear dynamo is characterized by a rotating equatorial dipole.
The nonlinear regime is characterized by fluctuating kinetic and magnetic
energies and a tilted dipole whose axial component exhibits aperiodic reversals
during the time evolution. These numerical evidences of dynamo action in a
short Taylor-Couette setup may be useful for developing an experimental device