350 research outputs found

    Activation and evasion of the type I Interferon response by infectious bronchitis virus : roles of the accessory proteins

    Get PDF
    SUMMARY Viruses are intracellular parasites that exploit the machinery of the host cell to replicate. To defend themselves against invading viruses, animal cells have evolved an anti-viral mechanism, known as the type I interferon response. Through natural selection viruses have in turn evolved mechanisms to counteract or evade the type I IFN response. Coronaviruses are a large group of positive-stranded RNA viruses that cause a range of human and veterinary diseases. Infectious bronchitis virus (IBV) is a member of the genus Gammacoronavirus and it is the causative agent of a highly contagious respiratory disease of poultry. To date, only few studies have investigated the interaction between IBV and the type I IFN response. In this thesis, we describe for the first time the activation of the type I interferon response (IFN response) by the Gammacoronavirus IBV, and the repressive role of accessory proteins therein. In Chapter 1 I provide a general introduction into coronaviruses in general and the Gammacoronavirus IBV in particular. I also introduce the IFN response, and highlight differences between the mammalian and chicken IFN response. Finally, I review current knowledge on the roles of coronavirus accessory proteins in counteraction of the IFN response. In Chapter 2 we describe our studies which demonstrated that activation of the IFN response by IBV is dependent on the intracellular double-stranded RNA sensor MDA5. We show that detection of IBV-infection by MDA5 is delayed with respect to the peak of viral replication, and demonstrate that this delay is not due to inhibition of dsRNA detection by IBV. Using mutant viruses that cannot express accessory proteins (null viruses), we found that accessory proteins 3a and 3b of IBV mediate transcription and translation of Ifnβ mRNA. The observation that IBV delays the activation of the IFN response, prompted us to investigate the sensitivity of IBV to IFN treatment in Chapter 3. Here we show that IBV is relatively resistant to treatment with type I IFN, as relatively high doses of type I IFN are required to decrease propagation of the virus. Next, we studied which viral protein(s) contribute to resistance of IBV to type I IFN and found that absence of accessory proteins 3a and 3b increased sensitivity of IBV to type I IFN, via a presently unknown mechanism. In addition, we observed that independent of accessory proteins 3a and 3b, IBV blocks signaling of IFN by inhibiting phosphorylation and translocation of the transcription factor STAT1. To explain the delayed kinetics of IFN production observed in Chapter 2, we investigated whether delayed protein production was restricted to IFN, or whether IBV, like Alpha- and Betacoronaviruses, inhibits general translation of host proteins (i.e. induces host shutoff). In Chapter 4 we demonstrate that IBV-induced transcription of Ifnβ mRNA leads to the production of relatively little IFN protein. We discovered that limited production of IFN protein by IBV-infected cells is the result of general inhibition of host translation, confirming that IBV induces a shutoff of host-protein production. This finding indicates that evasion of the innate immune system by Gammacoronaviruses may be more similar to that of Alpha- and Betacoronaviruses than previously thought. Using accessory protein null viruses we discovered that accessory protein 5b of IBV is essential for the inhibition of host-protein synthesis by IBV. In Chapter 5 and Chapter 6 we describe the methods used in this thesis to quantify the number of infectious virus particles of IBV as well as methods used to quantify the activation of the type I IFN response in chicken cells. Although the studies described in this thesis have answered several questions about the interaction of IBV with the type I IFN response of its host, they have also raised new questions to be addressed in future research. In the final Chapter of this thesis (Chapter 7), I discuss a number of remaining questions and future perspectives regarding evasion of the IFN response by IBV. Finally, I explore the possible implications of our findings on the in vivo pathogenicity of IBV and on the rational design of attenuated IBV vaccines. In conclusion, the work described in this thesis demonstrates for the first time how IBV evades, activates, and antagonises the IFN response. Also, this thesis comprises the first study that describes a function for the accessory proteins of IBV and shows that these poorly understood proteins play an important role in antagonism of the type I IFN response. </p

    The pharmacokinetics of medetomidine administered subcutaneously during Isoflurane anaesthesia in Sprague-Dawley rats

    Get PDF
    Anaesthetic protocols involving the combined use of a sedative agent, medetomidine, and an anaesthetic agent, isoflurane, are increasingly being used in functional magnetic resonance imaging (fMRI) studies of the rodent brain. Despite the popularity of this combination, a standardised protocol for the combined use of medetomidine and isoflurane has not been established, resulting in inconsistencies in the reported use of these drugs. This study investigated the pharmacokinetic detail required to standardise the use of medetomidine and isoflurane in rat brain fMRI studies. Using mass spectrometry, serum concentrations of medetomidine were determined in Sprague-Dawley rats during medetomidine and isoflurane anaesthesia. The serum concentration of medetomidine for administration with 0.5% (vapouriser setting) isoflurane was found to be 14.4 ng/mL (±3.0 ng/mL). The data suggests that a steady state serum concentration of medetomidine when administered with 0.5% (vapouriser setting) isoflurane can be achieved with an initial subcutaneous (SC) dose of 0.12 mg/kg of medetomidine followed by a 0.08 mg/kg/h SC infusion of medetomidine. Consideration of these results for future studies will facilitate standardisation of medetomidine and isoflurane anaesthetic protocols during fMRI data acquisition

    Herramientas de simulación para el apoyo de toma de decisiones en la gestión forestal adaptativa en Europa

    Get PDF
    In forest management there is a tendency towards measuring less and simulating more. In this context the development of reliable, user friendly forest simulators has become economically relevant. The objective of this perspective paper is to highlight the recent trends in forest simulation and to identify the remaining challenges to make forest simulation a reliable tool for forest policy and management. Experiences with forest simulators for various purposes in different geographical contexts illustrate how the important challenges of forest decision support can be addressed through flexible customization for different end-user categories, offering spatially explicit approaches at the landscape scale, and integrating empirical and mechanistic models in hybrid and bayesian simulation approaches. Recent development trends in forest simulation for decision support are mainly related to the ever increasing calculation speed and capacity of computers, facilitating the development of robust tools with comfortable user interface and realistic functions and options. Another trend is the combination of simulation tools with optimization and choice algorithms fading away the difference between simulators and decision support systems. The remaining challenges are basically in the high expectations of stakeholders concerning the ability of simulators to predict a range of outcomes in terms of ecosystem services and sustainability indicators, as well as the quality of their outcome in terms of output credibility to stakeholders. Need for accepted and realistic model validation and verification methods preferably using empirical data is crucial in this matter.En la planificación de la gestión forestal existe la tendencia a medir menos y similar más. En este contexto, el desarrollo de simuladores forestales es económicamente relevante para el gestor. El objetivo de este artículo es el de discutir y enfatizar tendencias en el ámbito de la simulación forestal e identificar retos importantes para que la simulación forestal sea una herramienta fiable en el proceso decisorio de la planificación forestal y en el de desarrollo de políticas. Varios ejemplos de simuladores forestales existentes y que responden a objetivos y escalas geográficas distintas, ilustran como la capacidad analítica de los gestores puede mejorar sustancialmente para responder a los grandes retos en el proceso decisorio de la gestión forestal. El artículo presenta simuladores que responden a necesidades de diferentes usuarios y hacen frente a distintas cuestiones, utilizando distintos enfoques y herramientas; desde simuladores espacialmente explícitos basados en modelos empíricos que son integrados con herramientas de optimización, hasta simuladores mecanísticos o basados en enfoques híbridos y bayesianos. El desarrollo más reciente en simulación forestal esta sobretodo relacionado con el incremento de capacidad de cálculo de los computadores, lo que ha facilitado el desarrollo de herramienta robustas y visuales, fáciles de utilizar por los usuarios finales. Otra tendencia, importante es la combinación de herramientas de simulación con técnicas de optimización númerica, lo cual posibilita el desarrollo de los mas modernos sistemas de soporte a la decisión. Uno de los retos más importantes es el de colmar las altas expectativas de los principales agentes y centros decisores forestales en relación a la capacidad de los simuladores y sistemas de apoyo a la decisión para proporcionar información relevante en relación a los servicios ecosistémicos e indicadores de sostenibilidad. En este contexto, es necesaria la validación de los diferentes modelos que configuran los simuladores haciendo uso de información empírica disponible

    Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive escherichia coli (AIEC) in immune cells

    Get PDF
    Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn's disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients

    Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

    Get PDF
    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections
    • …
    corecore