43 research outputs found

    The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis

    Get PDF
    Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes, thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an important role in efficient escape of B. pseudomallei from phagosomes

    Identification of Motifs of <em>Burkholderia pseudomallei</em>  BimA Required for Intracellular Motility, Actin Binding, and Actin Polymerization

    Get PDF
    Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-S-transferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP(7) proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei

    Analysis of the prevalence, secretion and function of a cell cycle-inhibiting factor in the melioidosis pathogen Burkholderia pseudomallei

    Get PDF
    Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B. pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined. Among 43 available B. pseudomallei genome sequences, 33 genomes (76.7%) harbor the gene encoding CHBP. Western blot analysis using antiserum raised to a synthetic CHBP peptide detected CHBP in 46.6% (7/15) of clinical B. pseudomallei isolates from the endemic area. Secretion of CHBP into bacterial culture supernatant could not be detected under conditions where a known effector (BopE) was secreted in a manner dependent on the Bsa T3SS. In contrast, CHBP could be detected in U937 cells infected with B. pseudomallei by immunofluorescence microscopy and Western blotting in a manner dependent on bsaQ. Unlike E. coli Cif, CHBP was localized within the cytoplasm of B. pseudomallei-infected cells. A B. pseudomallei chbP insertion mutant showed a significant reduction in cytotoxicity and plaque formation compared to the wild-type strain that could be restored by plasmid-mediated trans-complementation. However, there was no defect in actin-based motility or multinucleated giant cell formation by the chbP mutant. The data suggest that the level or timing of CHBP secretion differs from a known Bsa-secreted effector and that CHBP is required for selected virulence-associated phenotypes in vitro

    Quantitative Proteomic Analysis of Burkholderia pseudomallei Bsa Type III Secretion System Effectors Using Hypersecreting Mutants

    Get PDF
    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS “gatekeeper” family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei

    HIV/AIDS and the health of older people in the slums of Nairobi, Kenya: results from a cross sectional survey

    Get PDF
    Background: the proportion of older people is increasing worldwide. Globally, it is estimated that older people (those 60 years or older) constitute more than 11% of the population. As the HIV/AIDS pandemic rages in sub-Saharan Africa (SSA), its impact on older people needs closer attention given the increased economic and social roles older people have taken on as a result of increased mortality among adults in the productive age groups. Few studies have looked at older people and their health in SSA or indeed the impact of HIV/AIDS on their health. This study aims to assess the effect of being directly or indirectly affected by HIV/AIDS on the health of older people in two Nairobi slums.Methods: data were collected from residents of the Nairobi Urban Health and Demographic Surveillance area aged 50 years and above on 1st October 2006. Health status was assessed using the short SAGE (Study on Global AGEing and Adult Health) form and two outcome measures – self-rated health and a composite health score – were generated. To assess HIV/AIDS affected status, respondents were asked: Have you personally been affected by HIV/AIDS? If yes, a follow up question: "How have you been personally affected by HIV/AIDS?" was asked. Ordinallogistic regression was used in models with self-rated health and linear regression in models with the health score.Results: about 18% of respondents reported being affected by HIV/AIDS in at least one way, although less than 1% reported being infected with HIV. Nearly 60% of respondents reported being in good health, 27% in fair health and 14% in poor health. The overall mean health score was 70.6 (SD: 13.9) with females reporting worse health outcomes than males.Respondents directly or indirectly affected by HIV/AIDS reported worse health outcomes than those not affected: mean health score: 68.5 and 71.1 respectively (t = 3.21, p = 0.0007), and an adjusted odds ratio of reporting poor health of 1.42 (95%CI: 1.12–1.80).Conclusion: poor health outcomes among older people affected by HIV/AIDS highlight the need for policies that target them in the fight against HIV/AIDS if they are to play their envisaged care giving and other traditional role

    Polysaccharides and virulence of Burkholderia pseudomallei.

    No full text
    Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease of humans and animals. Gene clusters which encode capsular polysaccharide (type I O-PS) and LPS (type II O-PS), both of which play roles in virulence, have previously been identified. Here, the identification of two further putative clusters, type III O-PS and type IV O-PS, is reported. Mice challenged with type III O-PS or type IV O-PS mutants showed increased mean times to death (7.8 and 11.6 days) compared to those challenged with wild-type B. pseudomallei (3 days). To investigate the possible roles of polysaccharides in protection, mice were immunized with killed cells of wild-type B. pseudomallei or killed cells of B. pseudomallei with mutations in the O antigen, capsular polysaccharide, type III O-PS or type IV O-PS gene clusters. Immunization with all polysaccharide mutant strains resulted in delayed time to death compared to the naĂŻve controls, following challenge with wild-type B. pseudomallei strain K96243. However, immunization with killed polysaccharide mutant strains conferred different degrees of protection, demonstrating the immunological importance of the polysaccharide clusters on the surface of B. pseudomallei

    Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis.

    No full text
    Melioidosis is a severe infectious disease of animals and humans caused by the Gram-negative intracellular pathogen Burkholderia pseudomallei. An Inv/Mxi-Spa-like type III protein secretion apparatus, encoded by the B. pseudomallei bsa locus, facilitates bacterial invasion of epithelial cells, escape from endocytic vesicles and intracellular survival. This study investigated the role of the Bsa type III secretion system in the pathogenesis of melioidosis in murine models. B. pseudomallei bipD mutants, lacking a component of the translocation apparatus, were found to be significantly attenuated following intraperitoneal or intranasal challenge of BALB/c mice. Furthermore, a bipD mutant was attenuated in C57BL/6 IL-12 p40(-/-) mice, which are highly susceptible to B. pseudomallei infection. Mutation of bipD impaired bacterial replication in the liver and spleen of BALB/c mice in the early stages of infection. B. pseudomallei mutants lacking either the type III secreted guanine nucleotide exchange factor BopE or the putative effectors BopA or BopB exhibited varying degrees of attenuation, with mutations in bopA and bopB causing a significant delay in median time to death. This indicates that bsa-encoded type III secreted proteins may act in concert to determine the outcome of B. pseudomallei infection in mice. Mice inoculated with the B. pseudomallei bipD mutant were partially protected against subsequent challenge with wild-type B. pseudomallei. However, immunization of mice with purified BipD protein was not protective
    corecore