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Abstract

Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into
host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal
rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B.
pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined. Among 43
available B. pseudomallei genome sequences, 33 genomes (76.7%) harbor the gene encoding CHBP. Western blot analysis
using antiserum raised to a synthetic CHBP peptide detected CHBP in 46.6% (7/15) of clinical B. pseudomallei isolates from
the endemic area. Secretion of CHBP into bacterial culture supernatant could not be detected under conditions where a
known effector (BopE) was secreted in a manner dependent on the Bsa T3SS. In contrast, CHBP could be detected in U937
cells infected with B. pseudomallei by immunofluorescence microscopy and Western blotting in a manner dependent on
bsaQ. Unlike E. coli Cif, CHBP was localized within the cytoplasm of B. pseudomallei-infected cells. A B. pseudomallei chbP
insertion mutant showed a significant reduction in cytotoxicity and plaque formation compared to the wild-type strain that
could be restored by plasmid-mediated trans-complementation. However, there was no defect in actin-based motility or
multinucleated giant cell formation by the chbP mutant. The data suggest that the level or timing of CHBP secretion differs
from a known Bsa-secreted effector and that CHBP is required for selected virulence-associated phenotypes in vitro.
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Introduction

Burkholderia pseudomallei is a facultative intracellular pathogen

that causes melioidosis, a severe invasive disease of humans that

may involve subacute and latent phases. The basis of entry and

persistence of B. pseudomallei in host cells is ill-defined, but the bsa-

encoded Inv/Mxi-Spa-like Type III secretion system (T3SS-3) has

been identified as a key virulence factor [1,2]. T3SSs are nano-

machines that inject bacterial effector proteins directly into host

cells in order to subvert host cellular processes [3]. Only a small

number of effectors have been confirmed to be substrates of the

Bsa T3SS in B. pseudomallei, including BopC [4] and the guanine

nucleotide exchange factor BopE [5]. A further candidate effector

(BopA) was demonstrated to be Type III secreted in a surrogate

bacterial host [6] and to interfere with LC3-associated phagocy-

tosis [7]. A homologue of an E. coli Type III secreted effector

termed Cif (cycle-inhibiting factor) was identified in B. pseudomallei

and exhibits 21% amino acid identity and 40% similarity [8], but

no evidence has yet been presented that it is secreted via the Bsa

apparatus or that it influences pathogenesis during melioidosis.

In a subset of enteropathogenic and enterohaemorrhagic

Escherichia coli (EPEC and EHEC), Cif is an effector of the locus

of enterocyte effacement (LEE)-encoded T3SS [8,9] and belongs

to the cyclomodulin family of proteins that interfere with the

eukaryotic cell cycle [10]. Upon contact with epithelial cells, the

bacteria inject this protein into the host cell where it induces cell

enlargement, arrests the cell cycle G1/S and G2/M transitions,

disrupts the actin network, delays cell death and triggers

macrophage-specific apoptosis [8,11–13]. Recently, Cif was

reported to act by deamidation of ubiquitin or the ubiquitin-like

protein NEDD8 that regulates Cullin-RING-ubiquitin ligase

(CRL) complexes [14–18]. The homologues of E. coli Cif in other

bacterial pathogens of invertebrates and mammals have been

described, including B. pseudomallei [15,17,19,20], Yersinia pseudotu-

berculosis [14,19], Photorhabdus luminescens [19–21] and Photorhabdus

asymbiotica [19].
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Jubilin et al [19] demonstrated that treatment of HeLa cells

with the purified Cif homologue in B. pseudomallei (CHBP) mixed

with BioPORTER reagent induced cell enlargement, cell cycle

arrest at G2 phase and stress fiber formation in an identical

manner to that of E. coli Cif. Analysis of the crystal structures of

CHBP revealed that it possesses a papain-like fold with a Cys-His-

Gln catalytic triad similar to E. coli Cif [20,22]. In addition, a

recent study showed that CHBP is recognized by melioidosis

patient sera [23] indicating that it is expressed in vivo and may play

a role in pathogenesis.

In this study, we investigated the prevalence of CHBP in B.

pseudomallei strains by genome sequence analysis and by using an

antibody raised against a CHBP synthetic peptide to detect the

protein in clinical isolates of B. pseudomallei. Whilst it is assumed

that Cif family members are Type III secreted, no evidence has yet

been presented that CHBP is secreted through the Bsa apparatus.

We therefore explored whether CHBP is secreted via the Bsa

T3SS and evaluated phenotypes of a B. pseudomallei chbP mutant

and trans-complemented strains in a variety of cell culture infection

assays.

Materials and Methods

Bacterial Strains, Cell Lines and Culture Conditions
The prototype genome-sequenced B. pseudomallei strain K96243,

bsaQ mutant [24] and 14 clinical isolates [25] were routinely

maintained in Luria-Bertani (LB) broth or agar (Hardy Diagnostic,

USA) containing 40 mg/ml chloramphenicol where needed (bsaQ).

All cultures were grown at 37uC. Cell lines used in this study

including HeLa (human cervical carcinoma), J774A.1 (murine

macrophage-like cell) and U937 (human monocyte cell) were

obtained from the American Type Culture Collection (ATCC,

Manasssas, VA). HeLa, J774.1 and U937 cell lines were routinely

maintained in Dulbecco’s modified Eagle medium (DMEM)

supplemented with 10% (v/v) heat-inactivated fetal bovine serum

(FBS). All cells were cultured in a 5% CO2 atmosphere at 37uC in

a humidified incubator.

Bioinformatic Analysis of CHBP
The 43 full or partial B. pseudomallei genome sequences available

at the time of writing were interrogated using the K96243 CHBP

protein sequence (accession number NC_006351.1) using a Basic

Local Sequence Alignment Tool (tBLASTn) to determine

prevalence and sequence conservation. All CHBP amino acid

sequences were aligned using Clustal W to identify regions of

homology or divergence.

Construction of B. pseudomallei chbP Insertion Mutant
and trans-complemented Strains
A B. pseudomallei chbP (bpss1385) mutant was created by insertion

of a plasmid with a conditional origin of replication and

chloramphenicol resistance gene into the chbP gene on chromo-

some 2 of strain K92643. A 316 bp internal fragment of B.

pseudomallei chbP (corresponding to nucleotide positions 183–498)

was amplified using primers Cif-f (59-CTCGGA TCCGAGTTT-

GAAGATGTTGTTG-39) and Cif-r (59-CACTCTA-

GAAACTGGCG AAAATCCTATG-39) and the product was

cloned into the suicide vector pKNOCK-Cm [26]. The recom-

binant plasmid pKNOCK-chbP was transformed into E. coli S17–

1lpir [27] and mobilized into B. pseudomallei K96243 by

conjugation and recipients selected by plating on agar supple-

mented with 40 mg/ml chloramphenicol and 30 mg/ml kanamy-

cin. The resulting B. pseudomallei chbP::pKNOCK mutant was

verified by polymerase chain reaction (PCR) using the primer pairs

KNOCK1/Cif-R (59-CACTTAACGGCTG ACATGG-39/59-

CCGACTAGTACATCTGCTGCGGTCTCAC-39; product size

of 935 bp) and KNOCK2/Cif-F (59-GTAGCACCAGGCGTT-

TAA-39/59-CCGCT CGAGATGCATCATCATCATCAT-

CATCTACTATTGTTGGAGCACG-39; product size of

1,584 bp), and by Southern blot analysis using genomic DNA

double digested with ApaI/SmaI enzymes and a chbP-specific probe

amplified by the Cif-f and Cif-r primers.

For complementation studies, the chbP open-reading frame was

amplified from B. pseudomallei K96243 genomic DNA using

primers BpsCifTEM (59-ATATATGAGCTCCAGA-

CAATCTGTGTGGG-39) and BpsCif6His (59-ATATATA-

GATCTCTAGTGGTGGTGGTGGTGGTGGCCAAG

GCCGACGACGTATTG-39). The amplified DNA fragment was

cloned into the IPTG-inducible broad host range vector pME6032

[28], generating pCHBP. This plasmid was delivered into the B.

pseudomallei chbP mutant by electroporation to produce the B.

pseudomallei chbP/pCHBP strain, which was confirmed by plasmid

DNA extraction and sequencing.

Generation of a CHBP-specific Antibody and Western Blot
Analysis
A polyclonal rabbit antiserum against CHBP was generated by

Cambridge Research Biochemicals (Cleveland, UK) by immuni-

zation with the synthetic peptide ASHEYDFRQFQRNAQ.

Specificity of the purified IgG was confirmed by Western blotting

of lysates prepared from wild-type B. pseudomallei and chbP insertion

mutant strains. To detect secretion of CHBP in culture

supernatants, overnight cultures of B. pseudomallei strains were

sub-cultured into LB broth or serum-free DMEM with or without

induction with 10 mM IPTG where appropriate and incubated at

37uC for 6 h. After centrifugation, B. pseudomallei cell pellets were

lysed with B-PER II Reagent (Pierce, Rockford, USA) to release

intracellular proteins whereas bacterial cell culture supernatant

was filtered through 0.22 mM low protein-binding membranes

before protein precipitation using a final concentration of 50% (v/

v) ethanol. Whole bacterial cell lysates and precipitated secreted

proteins were resolved by 12% SDS-polyacrylamide gel electro-

phoresis (SDS-PAGE) and the proteins were transferred to

nitrocellulose membranes (Pierce). The blotted proteins were

probed with rabbit BopE-specific [5] or CHBP-specific antibodies

at a dilution of 1:500 for 3 h. Horseradish peroxidase (HRP)-

conjugated mouse anti-rabbit IgG (DAKO, USA) at the dilution of

1:3000 and a chromogenic substrate-3, 39-diaminobenzidine

(DAB; Sigma Chemical Co., USA) were added to detect bound

antibodies.

For detection of CHBP protein in infected host cells, U937 cells

were activated with 20 ng/ml phorbol 12-myristate 13-acetate

(PMA; Sigma Chemical Co.) for 48 h in DMEM supplemented

with 10% (v/v) FBS then inoculated with B. pseudomallei strains at a

multiplicity of infection (MOI) of 2 or 100. To induce the

expression of CHBP from the pCHBP plasmid in the trans-

complemented strain, IPTG was added to a final concentration of

10 mM to the culture medium. Two hours after addition of

bacterial strains, infected cells were washed with phosphate-

buffered saline (PBS) and maintained in media containing 250 mg/
ml kanamycin to kill extracellular bacteria for a further 2 h. Media

was replaced at 4 h post-infection with fresh medium containing

20 mg/ml kanamycin until 6 h post-infection. Thereafter, the

infected cells were washed and lysed with 0.1% (v/v) Triton X-100

in PBS. Protein lysates of infected U937 cells were centrifuged for

1 min at 13,0006g to separate the bacteria and insoluble

cytoskeleton of the cells from the cytosolic cell supernatant. Then,

the supernatants were resolved by SDS-PAGE, transferred onto
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nitrocellulose membranes and independently probed with anti-

CHBP and anti-BopE antibodies as above. Bound primary

antibodies were detected with HRP-conjugated mouse anti-rabbit

IgG (DAKO, USA) at a 1:3000 dilution using SuperSignal West

Pico Chemiluminescent substrate (Thermo Scientific Pierce,

USA).

Confocal analysis of CHBP Following Infection
PMA-activated U937 macrophage cells were seeded on

22622 mm square glass coverslips (Menzel-Glaser, Germany) in

6-well plates (Costar, USA) and incubated at 37uC in a humidified

5% CO2 atmosphere. Overnight cultures of B. pseudomallei

K96243, chbP mutant or the trans-complemented strain were used

to infect U937 cells at a MOI of 2 for 2 h. A 10 mM IPTG (final

concentration) was added to the culture medium for induction of

CHBP expression from pCHBP. The duration of incubation and

procedures for killing of extracellular bacteria were as described

above for detection of CHBP in infected cells by Western blotting.

At 6 h post-infection cells were washed and fixed with 4% (v/v)

paraformaldehyde in PBS. The fixed cells were washed with PBS

and permeabilized with 0.5% (v/v) Triton X-100 in PBS for

30 min. Then, 1% (w/v) bovine serum albumin (BSA) in PBS was

added and incubated for 30 min at room temperature. Subse-

quently, the infected cells were stained with 1:500 of rabbit CHBP-

specific antibody at 37uC for 1 h, followed by washing with PBS

and bound antibodies were detected with a 1:1000 goat anti-rabbit

antibody-Alexa Fluor488 (Molecular Probes, USA) in 1% (w/v)

BSA. The staining was observed by confocal laser scanning

microscope using a Zeiss LSM 510 META instrument (Carl Zeiss,

Germany) and analyzed by DP Manager (version 3.1.1) equipped

with LSM (release 3.2) software. Where necessary coverslips were

stained for actin filaments using Alexa Fluor568-conjugated

phalloidin (Molecular Probes) and DNA stained using 49, 69

diamidine-29-phenylindole dihydrochloride (DAPI, Molecular

Probes). Bacteria were stained using mouse monoclonal anti-B.

pseudomallei lipopolysaccharide antibody (Camlab, Cambridge,

United Kingdom) detected with Alexa Fluor488-conjugated anti-

mouse Immunoglobulin (Molecular Probes).

Cell Infection Assays
To assay net intracellular replication, PMA-activated U937 cells

were seeded and infected with B. pseudomallei strains at an MOI of

2. After 2 h infection at 37uC, cells were washed with PBS, media

was replaced with medium containing 250 mg/ml of kanamycin to

kill extracellular bacteria, and incubated for another 2 h.

Thereafter, the infected cells were incubated with medium

containing 20 mg/ml kanamycin. At 3, 6, 9 and 12 h post-

infection, the infected host cells were washed with PBS and lysed

with 0.1% (v/v) Triton X-100 in PBS. Viable intracellular bacteria

were quantitated by plating serial ten-fold dilutions of lysates on

trypticase soy agar and counting colonies after 24–36 h of

incubation at 37uC.
Plaque-forming efficiency was evaluated as previously described

[29] with some modifications. HeLa cells were infected with B.

pseudomallei at an MOI of 20 and incubated at 37uC with 5% CO2

for 2 h. After 2 h incubation, the infected cell monolayers were

washed and replaced with a medium containing kanamycin

(250 mg/ml). The plates were incubated at 37uC in a humidified

5% CO2 atmosphere for at least a further 16 h. Plaques were

stained with 1% (w/v) crystal violet in 20% (v/v) methanol and

counted by microscopy. Plaque-forming efficiency was calculated

by the following equation: number of plaques/CFU of bacterial

added per well.

The efficiency of multinucleated giant cell (MNGC) formation

[29] and cell cytotoxicity [30] in monolayers infected with wild-

type, the chbP mutant and the trans-complemented strains of B.

pseudomallei were assessed as described by Suparak et al [29] and

Korbsrisate et al [30].

Statistical Analysis
All experiments were independently performed a minimum of

three times. The significance of differences between groups was

assessed using the unpaired t-test using GraphPad Prism 6 software

(STATCON). P values #0.05 were taken to be significant.

Results

Prevalence and Sequence Diversity of CHBP in B.
pseudomallei
B. pseudomallei K96243 chromosome 2 harbors bpss1385, the

gene encoding the Cif homologue CHBP, a hypothetical 328

amino acid protein with a predicted molecular weight of 35.8 kDa.

To examine the conservation of CHBP among sequenced B.

pseudomallei strains, 43 available complete or draft B. pseudomallei

genome sequences were searched for homologues to the CHBP

protein of K96243 using tBLASTn and homologous sequences

aligned using the ClustalW multiple sequence alignment tool. Of

the 43 available genomes, 33 (76.7%) B. pseudomallei strains

harbored CHBP with .99% amino acid sequence identity to

CHBP of B. pseudomallei strain K96243. Apart from amino acid

differences detected at E32G, T88M, G157R, G223E, G237E and

T278M in a small number of strains, the amino acid sequences

were remarkably highly conserved, with complete conservation of

the predicted catalytic Cys-His-Gln triad [20] (Figure S1). A

1.5 kb deletion of chbP (bpss1385) between the predicted transpos-

ase genes bpss1384 and bpss1385a was detected in the draft genome

sequence of the virulent strain 10276 used to identify the bsa locus,

and was confirmed by PCR with flanking primers (data not

shown). The same deletion boundaries were present in all the

deposited genome sequences that lack chbP, indicating that the

gene is likely to be absent in these strains rather than chbP

sequence reads being absent or not aligned to the scaffold. It is

noteworthy that chbP homologues were lacking in the related but

avirulent species B. thailandensis (6 genomes) and the glanders

pathogen B. mallei (10 genomes). In addition, there was no

evidence of any truncations in the chbP sequences that may ablate

function as described previously from analysis of E. coli Cif

sequences [8].

Additionally, a selection of B. pseudomallei clinical isolates from

the endemic area [25] were studied by Western blotting of

bacterial cell lysates for CHBP expression using rabbit polyclonal

antiserum raised against a CHBP synthetic peptide. Of 15 B.

pseudomallei isolates, a protein of the expected size of CHBP was

detected in 7 (46.6%) samples, whereas 8 samples including the

10276 strain from Bangladesh were negative (data not shown),

consistent with the deletion of chbP detected in the draft genome

sequence and PCR with chbP-flanking primers of 10276 genomic

DNA.

Analysis of CHBP Secretion by B. pseudomallei
To confirm the specificity of the anti-CHBP antibody and

determine if CHBP is secreted, B. pseudomallei strains in which chbP

was inactivated by insertion of the pKNOCK suicide replicon via

homologous recombination (chbP::pKNOCK) or restored by

inducible expression of chbP from a plasmid (chbP/pCHBP) were

constructed and validated by sequencing. Western blot analysis of

whole cell extracts of such strains with anti-CHBP detected a

Burkholderia pseudomallei Cycle-Inhibiting Factor
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protein of the expected size in wild-type K96243, but not the chbP

insertion mutant, and this was restored by introduction of pCHBP

into the mutant (Figure 1). No significant difference in growth of

the bacterial strains under the conditions used was detected (data

not shown). B. pseudomallei Bsa-secreted proteins such as BopE and

BipD can be detected in the supernatant of late logarithmic phase

LB-grown cultures of wild-type, but not bsa-deficient strains [5,24].

Interestingly, under these conditions, CHBP could not be detected

in the supernatant of the cultures that yielded CHBP in the whole

cell extract (Figure 1), even though we were able to confirm that

the supernatants contained the known Bsa effector BopE by

Western blotting using anti-BopE antibody (Figure 1). These data

suggest that secretion of CHBP may be regulated in a manner

distinct from BopE, though we cannot preclude the possibility that

failure to detect CHBP in culture supernatant may reflect low

abundance, low antibody affinity or avidity or the insensitivity of

the detection system.

CHBP can be Detected in B. pseudomallei-infected Cells
Since CHBP could not be detected in B. pseudomallei culture

supernatants under conditions where BopE was detected, we

investigated whether host cell contact may trigger CHBP

secretion. U937 macrophage-like cells were separately infected

with B. pseudomallei K96243, the chbP mutant and the trans-

complemented strain. After 6 h, cells were fixed and stained with

rabbit anti-CHBP antibody followed by anti-rabbit Alexa Fluor488

conjugate. Confocal micrographs revealed diffuse punctate stain-

ing in the cytoplasm of B. pseudomallei K96243-infected cells; but

with the same conditions for excitation and capture of confocal

images, such staining was absent in cells infected with the chbP

mutant (Figure 2). No differences in intracellular survival of the B.

pseudomallei K96243 and chbP mutant strains were detected over

the duration of the assay (Figure S2). The intensity of staining was

restored by induction of CHBP expression from a plasmid in the

chbP mutant (Figure 2). These results indicate that B. pseudomallei

K96243 is able to secrete CHBP in infected host cells, and that

unlike BopE its secretion may require host cell contact.

To exclude the possibility that CHBP secretion might be

influenced by eukaryotic cell culture medium, bacterial lysates and

secreted proteins of B. pseudomallei strains cultured in serum-free

DMEM were prepared and Western blot analysis of CHBP

secretion was performed. CHBP and BopE could not be detected

in the supernatants of cultures of the B. pseudomallei strains, even

though both effector proteins were identified in the bacterial

lysates (except from B. pseudomallei chbP mutant which does not

produce CHBP protein) (Figure S3). This implies that CHBP is

secreted in response to host cell infection rather than cues from the

culture medium.

The timing of expression and localization of CHBP in infected

cells was also followed over time by confocal microscopy. In U937

cells infected with B. pseudomallei K96243, staining was consistently

detected in the cytoplasm at intervals from 3 to 12 h post-infection

(Figure 3), with no obvious concentration in the nucleus as

previously reported for E. coli Cif over the time intervals tested

[19]. Staining could not be detected in the cytosol of U937 cells

infected with the B. pseudomallei chbP mutant over the same 12 h

time course.

The immunofluorescence microscopy data were verified by

detection of CHBP protein in infected cells by Western blotting.

When using the same MOI and duration of incubation as used for

immunofluorescence microscopy CHBP could be detected in

lysates of U937 cells infected with the wild-type and trans-

complemented strains, but not the chbP mutant (Figure 4A). BopE

could be detected in cells infected with each of the strains, with the

exception of the bsaQ mutant, and the intensity of signals were

increased when an MOI of 100 was used (Figure 4B). The absence

of BopE in the lysates of bsaQ-infected cells indicates that the

signals obtained did not arise from the lysis of bacteria in the

samples.

Secretion of CHBP in Host Cells is Bsa-dependent
As it has been reported that CHBP can be injected by the E. coli

T3SS in an identical manner to E. coli Cif [19], we speculated that

CHBP can be secreted via the virulence-associated Bsa T3SS. To

investigate this possibility, cells were infected with B. pseudomallei

wild-type or an isogenic bsaQ mutant [24]. The B. pseudomallei bsaQ

mutant lacks a structural component of T3SS and exhibits a defect

in secretion of the known Bsa-secreted proteins BopE and BipD

and delayed escape from endosomes [24]. During the 12 h

infection time course, the bsaQ mutant exhibited comparable

intracellular net replication in U937 cells to the B. pseudomallei wild-

type K96243 strain (Figure S4). Confocal microscopy indicated

that the bsaQ mutant could not secrete CHBP into the cell

cytoplasm even at 12 h post-infection, despite the ability of the

bsaQ mutant to express the protein as shown in Figure S4. In

addition, Western blotting for CHBP in U937 cells infected with

the bsaQ mutant failed to detect CHBP in cell lysates either at an

MOI of 2 (Figure 4A) or 100 (Figure 4B). The data indicate that

CHBP secretion in host cells is Bsa-dependent, though further

studies are required to determine if this reflects the direct

requirement for Bsa to secrete CHBP or the requirement for

Figure 1. SDS-PAGE and Western blot analysis of CHBP in B.
pseudomallei K96243 wild-type, chbP mutant and trans-comple-
mented strains. A) SDS-PAGE. Bacterial lysates and secreted proteins
of B. pseudomallei K96243, chbP mutant or chbP/pCHBP strain cultured
in LB broth for 6 h were separated by 12% polyacrylamide gel
electrophoresis. B) Western blot analysis. The blotted proteins from A)
were separately probed with anti-CHBP and anti-BopE antibodies.
Molecular mass markers are shown on the left. Lanes 1–3 are bacterial
cell lysates and lanes 4–6 are secreted proteins precipitated from
culture supernatants.
doi:10.1371/journal.pone.0096298.g001

Burkholderia pseudomallei Cycle-Inhibiting Factor

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e96298



Bsa-dependent bacterial escape to the cytosol where CHBP may

then be secreted.

B. pseudomallei CHBP Influences Virulence-associated
Interactions with Host Cells
During EPEC and EHEC infections, Cif was initially reported

to induce a progressive cytopathic effect involving stress fibre

formation, as well as arrest of the cell cycle as detected by a change

in DNA content [19]. These phenotypes took several days to fully

develop, and it was possible to sterilise the cell cultures of bacteria

after a period of T3SS-mediated injection of Cif by antibiotic

treatment. We repeatedly attempted to sterilise cell cultures

infected with B. pseudomallei wild-type and chbP mutant strains to

investigate effects on the cytoskeleton and cell cycle, but were

impeded by the high intrinsic resistance of B. pseudomallei to diverse

antibiotics and loss of viability of infected host cells at the intervals

where phenotypes had previously been detected (data not shown).

We were nevertheless able to examine whether CHBP influenced

interactions between B. pseudomallei and host cells that have been

linked to virulence.

The capacity for cell-to-cell spread is an important characteristic

of B. pseudomallei pathogenesis [31]. The ability of B. pseudomallei

K96243 and the chbP mutant to disseminate from cell-to-cell was

evaluated by infection of non-phagocytic HeLa cells. We found

that plaque-forming efficiency of B. pseudomallei chbP mutant

(7.663.761024 pfu/bacteria) was significantly reduced compared

to the wild-type strain (28.764.461024 pfu/bacteria) (Figure 5A).

Moreover, the B. pseudomallei chbP mutant consistently produced

smaller plaques when compared to the wild-type strain (Figure 5B).

Cell-to-cell spreading of the chbP mutant was restored by

introduction of pCHBP and infection of cells in the presence of

inducer.

Additionally, we compared the level of host cell damage

(cytotoxicity) induced by B. pseudomallei wild-type and chbP mutant

by measuring the LDH release of infected HeLa cells and U937

cells at 6 h post-infection. The B. pseudomallei chbP mutant caused a

significantly lower level of cytotoxicity compared to the wild-type

strain upon infection of HeLa cells (at the MOI of 25, 50 and 100;

Figure 6A) and U937 cells (at the MOI of 25 and 50; Figure 6B).

Discussion

Cif is a bacterial cyclomodulin that arrests the cell cycle and

modulates multiple cellular processes, as first described during

EPEC and EHEC infection of cultured cells [8]. Proteins

homologous to E. coli Cif have been identified in diverse bacterial

pathogens including Y. pseudotuberculosis, P. luminescens, P. asymbiotica

and B. pseudomallei [19]. Though the subject of intense study at the

molecular level; the prevalence, secretion and role in infection of

Cif homologues has received little attention. Recently, it has been

reported that CHBP is recognized by melioidosis patient sera [23],

however its function during interactions between B. pseudomallei

and host cells is ill-defined.

Analysis of draft or complete B. pseudomallei genome sequences

available at the time of writing indicated that chbP is present in 33

of 43 strains (76.7%), with minimal variation in predicted amino

acid sequences and full conservation of the catalytic triad in

CHBP-positive strains. A survey of 15 clinical B. pseudomallei

isolates from the endemic area indicated that approximately half

produced CHBP, indicating that CHBP is not an absolute

requirement for B. pseudomallei to cause melioidosis (or B. mallei

Figure 2. Confocal micrographs of CHBP expression and localization in U937 cells infected with B. pseudomallei. PMA-activated U937
cells were separately infected with three strains of B. pseudomallei (K96243, chbP mutant or chbP/pCHBP strain). After 6 h, infected cells were fixed,
permeabilized andstained using purified rabbit anti-CHBP antibody detected with anti-rabbit Ig-Alexa Fluor488 (Molecular Probes). The bottom panel
shows the localization of CHBP and the top panel merges this signal with differential interference contrast (DIC) images showing the position of
infected cells. Scale bars, 20 mm.
doi:10.1371/journal.pone.0096298.g002
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Figure 3. Confocal micrographs indicating bsaQ-dependent secretion of CHBP in U937 cells infected with B. pseudomallei. PMA-
activated U937 cells were separately infected with B. pseudomallei (K96243, bsaQ or chbP mutant strain). At different time points of infection (3, 6, 9
and 12 h), infected cells were stained using purified rabbit anti-CHBP antibody detected with anti-rabbit Ig-Alexa Fluor488 (Molecular Probes). The
bottom panel shows the localization of CHBP and the top panel merges this signal with DIC images showing the position of infected cells. Scale bars,
10 mm.
doi:10.1371/journal.pone.0096298.g003
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to cause glanders). Indeed, the B. pseudomallei 10276 strain isolated

from a human melioidosis patient in Bangladesh is known to be

virulent in murine models of melioidosis [32] despite the proven

deletion in the bpss1384-bpss1385a region and absence of CHBP

protein by Western blotting with specific antibody. Similarly,

Marchès et al [8] reported that cif is not universally present in

pathogenic EPEC and EHEC, and that some strains encode a

truncated variant that is inactive. Variation in the repertoire of

Type III secreted effectors is well known and it is possible that

CHBP is non-essential for virulence, that functional redundancy

may exist, or that presence or absence of Cif is related to subtle

differences in virulence. Other cyclomodulins are known in E. coli

(e.g. cytolethal-distending toxin and cytotoxic necrotizing factor)

and it will be of interest to determine if other toxins of this kind

exist in pathogenic Burkholderia.

B. pseudomallei is predicted to encode three Type III protein

secretion systems and it has yet to be demonstrated that CHBP is

secreted by the virulence-associated Bsa apparatus. An antibody

raised against a synthetic peptide of CHBP reacted specifically

with a 35 kDa protein in whole cell lysates of B. pseudomallei

K96243 consistent with predictions, but no protein was detected at

this position in a lysate of an isogenic chbP insertion mutant.

Reactivity was restored when cloned chbP was introduced into the

mutant on an inducible plasmid. In contrast to BopE, which was

readily detected in the supernatant of LB-grown B. pseudomallei as

before [5], we were unable to detect CHBP despite evidence that

the protein was present in the whole-cell fraction. Interestingly, we

were able to detect CHBP-specific staining in the cytosol of U937

human macrophage cells after infection with B. pseudomallei

K96243 or the trans-complemented strain, but not the chbP

mutant, suggesting that secretion of CHBP may be activated on

host cell contact or induced by an intracellular signal. It is

noteworthy that the P. luminescens Cif homologue CHPL is secreted

into the culture supernatant at a time when the well characterized

Type III secreted effector LopT is not [21], even though it has

been proposed to be an effector of the T3SS.

Despite the absence of CHBP in the secreted fraction when

BopE was detected, appearance of cytosolic CHBP in infected cells

was dependent on a functional Bsa system, as it was absent in a

bsaQ mutant previously reported to be deficient in Type III

secretion [4]. Though it is tempting to speculate that the failure of

CHBP to appear in lysates of U937 cells infected with the bsaQ

mutant is evidence that CHBP is secreted via the Bsa apparatus, it

should be noted that Bsa is required for the bacteria to escape

Figure 4. SDS-PAGE and Western blot analysis of CHBP in B. pseudomallei-infected U937 cells. A) Protein from lysates of U937 cells
infected at an MOI of 2 with B. pseudomallei K96243, chbP mutant, chbP/pCHBP strain or bsaQ mutant for 3 or 6 h were separated by 12%
polyacrylamide gel electrophoresis and blotted with anti-CHBP and anti-BopE antibodies. Molecular mass markers are shown on the left. Panel B
shows data from an identical experiment, except using an MOI of 100.
doi:10.1371/journal.pone.0096298.g004
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endosomes. It remains a possibility that CHBP is secreted only

once B. pseudomallei enters the cytosol in a Bsa-dependent way. To

separate these possibilities we repeatedly attempted to detect the

Bsa-dependent appearance of CHBP in cells infected with B.

pseudomallei wild-type and mutant strains in the presence of

cytochalasin D to prevent bacterial uptake. By Western blotting

we were unable to detect injection of CHBP into cells where B.

pseudomallei was prevented from uptake (data not shown), though

this may reflect low levels of injection or the sensitivity of the

detection method,

The cytosolic staining obtained with a CHBP-specific antibody

is in contrast to observations with E. coli Cif, where ectopic

expression leads to accumulation of the protein in the nucleus

[16]. CHBP is predicted to act on nuclear targets, but we cannot

preclude the possibility that it enters the nucleus at lower levels, or

that it may be enriched in the nucleus at time intervals beyond

those studied here.

E. coli Cif induces the accumulation of p21 and p27 that inhibit

CDK1-CyclinB and CDK2-CyclinA/E, leading to cell cycle arrest

at the G2/M and G1/S transitions [16]. Cui et al [17]

demonstrated that this and other activities of Cif require glutamine

deamidation of ubiquitin or the ubiquitin-like protein NEDD8

that regulates Cullin-RING ubiquitin ligases. We repeatedly

attempted to detect CHBP-dependent inhibition of the cell cycle

during B. pseudomallei infection as previously demonstrated by E.

coli Cif by flow cytometric analysis of propidium iodide-stained

cells, but were hindered by our inability to completely remove B.

pseudomallei from the culture system owing to its intrinsic high level

of resistance to antibiotics and induction of cell death 24–48 h

post-inoculation.

Figure 5. Effect of chbP mutation on B. pseudomallei plaque formation. A) Plaque-forming efficiency. HeLa cells were infected with B.
pseudomallei (K96243, chbP mutant or chbP/pCHBP strain) at an MOI of 20. Plaque-forming efficiency was established following staining of the
infected cells with crystal violet. Plaque-forming efficiency at 21 h was calculated by the following equation: number of plaques/CFU of bacteria
added per well. Asterisks indicate significant differences (P value ,0.05, t-test) between groups. Error bars represent standard errors of the means for
experiments performed in triplicate. B) Photographs of plaques. Representative images of the infected cell monolayers after infection with B.
pseudomallei K96243, chbP mutant or chbP/pCHBP strains for 21 and 24 h. Note the reduced number of plaques and reduced plaque size of the chbP
mutant.
doi:10.1371/journal.pone.0096298.g005
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It has been reported that EPEC Cif induces cell damage and

apoptosis of IEC-6 intestinal cells in a manner associated with

LDH release and caspase-3 activation after infection [12].

Similarly, Cif homologue in P. luminescens triggers apoptosis in

insect cells, albeit this activity is not associated with virulence in an

insect model [21]. Consistent with these findings, the B. pseudomallei

chbP mutant caused the release of lower levels of LDH in infected

HeLa cells compared to the wild-type and complemented strain,

despite intracellular net replication occurring at comparable levels

(data not shown). B. pseudomallei has recently been reported to

induce expression of apoptosis-related genes including caspase-3,

caspase -8, caspase -9, Bax, and Bcl-2 in macrophages [33], and

the role of CHBP in modulation of apoptosis during B. pseudomallei

infection merits future study, ideally in murine models.

A significant reduction in plaque formation was detected with

the chbP mutant that could be restored by plasmid-mediated trans-

complementation. Plaque formation reflects the outcome of

multiple processes, including uptake, endosome escape, net

intracellular replication and spread to adjacent cells via actin-

based motility or cell fusion. While we did not detect a defect in

the net intracellular replication (Figure S2), actin tail formation or

multinucleated giant cell formation (Figure S5) by the chbP mutant

over short duration cell-based assays, it is possible that subtle

phenotypes are amplified over the longer duration and multiple

cycles of infection required to form a plaque. It is noteworthy that

despite marked cell-based phenotypes, Cif homologue in P.

luminescens is not required for full virulence in an insect model

[21] and studies in murine melioidosis models are required before

the relevance of the activities attributed to CHBP to date can be

stated. Nevertheless, our study indicates a requirement for the Bsa

apparatus for secretion of CHBP in host cells and indicates that

distinct signals may regulate the expression or secretion of Bsa

effectors.

Supporting Information

Figure S1 Sequence diversity of CHBP in sequenced B.
pseudomallei genomes. Prototypic B. pseudomallei CHBP

sequences were aligned using ClustalW. Note the minor

differences in amino acid composition between the proteins

(presented in red) and conservation of the predicted catalytic Cys-

His-Gln triad (highlighted in yellow) proposed by Crow et al [20].

(TIF)

Figure S2 SDS-PAGE and Western blot analysis of
CHBP in B. pseudomallei K96243, the chbP mutant and
the complemented strains grown in DMEM or LB
media. A) B. pseudomallei lysates and B) secreted proteins from

K96243 wild-type, chbP mutant or chbP/pCHBP strains cultured

in serum-free DMEM medium for 6 h were separated by 12%

SDS-PAGE. The blotted proteins were separately probed with

anti-CHBP and anti-BopE antibodies. Molecular mass markers

are shown on the left of the gel. Bacterial lysate and secreted

protein prepared from B. pseudomallei K96243 cultured in LB broth

were used as the positive controls.

(TIF)

Figure S3 B. pseudomallei intracellular survival in U937
cells. PMA-activated U937 cells were infected with B. pseudomallei

K96243 wild-type, bsaQ or chbP mutant strains at an MOI of 2.

After 3, 6, 9 and 12 h of infection, infected cells were lysed and the

numbers of viable bacteria were enumerated after plating on TSA

and incubation at 37uC for 36–48 h.

(TIF)

Figure S4 SDS-PAGE and Western blot analysis of
CHBP expression and secretion in B. pseudomallei
K96243 and an isogenic bsaQ mutant. A) SDS-PAGE.

Bacterial lysates and secreted proteins of B. pseudomallei K96243 or

bsaQ mutant strain cultured in LB broth for 6 h were separated by

12% SDS-PAGE. B) Western blot analysis. The blotted proteins

from A) were probed with anti-CHBP antibody. Molecular mass

markers are shown on the left.

(TIF)

Figure S5 Effect of chbP mutation on B. pseudomallei
intracellular movement and intercellular spreading. A)
Actin tail formation. PMA-activated U937 cells were infected with

two strains of B. pseudomallei (K96243 or chbP mutant strain) at an

MOI of 2. After 6 h of infection, infected cells were fixed using 4%

paraformaldehyde and actin filaments stained with phalloidin568

(red) and bacteria stained with mouse monoclonal anti-B.

pseudomallei lipopolysaccharide antibody detected with anti-mouse

Ig-Alexa Fluor488 (green). Bar, 10 mm. B) Multinucleated giant cell

formation. MNGC formation in J774A.1 murine macrophage cells

infected at an MOI of 2 with B. pseudomallei (K96243 or chbP

mutant strain) was studied 6 h post-infection by Giemsa staining of

the cell monolayers. The stained cells were examined under a light

microscope (OLYMPUS) at a magnification of 20X.

Figure 6. Effect of chbP mutation on B. pseudomallei-induced cytotoxicity. A) HeLa cells and B) U937 cells were infected with B. pseudomallei
(K96243, chbP mutant or chbP/pCHBP strain) with a range of MOIs. After 6 h, cytotoxicity was assessed using the CytoTox96 lactate dehydrogenase
(LDH)-release kit (Promega). Asterisks indicate significant differences (P value ,0.05, t-test) between groups. Error bars represent standard errors of
the means for experiments performed in triplicate.
doi:10.1371/journal.pone.0096298.g006
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(TIF)
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