55 research outputs found

    Heat/mortality sensitivities in Los Angeles during winter: A unique phenomenon in the United States

    Get PDF
    Background: Extreme heat is often associated with elevated levels of human mortality, particularly across the mid-latitudes. Los Angeles, CA exhibits a unique, highly variable winter climate, with brief periods of intense heat caused by downsloping winds commonly known as Santa Ana winds. The goal is to determine if Los Angeles County is susceptible to heat-related mortality during the winter season. This is the first study to specifically evaluate heat-related mortality during the winter for a U.S. city. Methods: Utilizing the Spatial Synoptic Classification system in Los Angeles County from 1979 through 2010, we first relate daily human mortality to synoptic air mass type during the winter season (December, January, February) using Welch\u27s t-tests. However, this methodology is only somewhat effective at controlling for important inter- and intra-annual trends in human mortality unrelated to heat such as influenza outbreaks. As a result, we use distributed lag nonlinear modeling (DLNM) to evaluate if the relative risk of human mortality increases during higher temperatures in Los Angeles, as the DLNM is more effective at controlling for variability at multiple temporal scales within the human mortality dataset. Results: Significantly higher human mortality is uncovered in winter when dry tropical air is present in Los Angeles, particularly among those 65 years and older (p \u3c 0.001). The DLNM reveals the relative risk of human mortality increases when above average temperatures are present. Results are especially pronounced for maximum and mean temperatures, along with total mortality and those 65 +. Conclusions: The discovery of heat-related mortality in winter is a unique finding in the United States, and we recommend stakeholders consider warning and intervention techniques to mitigate the role of winter heat on human health in the County

    An expert assessment on playspace designs and thermal environments in a Canadian context

    Get PDF
    Playgrounds are a hub for child play and concerns that may impact children\u27s play there may hinder their health and well-being. Extreme temperatures can increase risks in children of sunstroke, burns from playground surfaces, and exposure to ultraviolet radiation. Despite health risks from extreme heat to children, existing playground design standards around the world, including in Canada, make little-to-no mention of how to design playgrounds for thermal comfort, particularly in summer. To help fill this gap in the Canadian context, several organizations collaborated to develop guidance for thermally comfortable playgrounds in Canada. As part of this project, an online survey was administered to 55 experts with diverse professional backgrounds, largely from Canada and the United States, to determine how thermal comfort is viewed in playground design and safety. Survey results showed agreement among experts that thermal comfort receives low or no priority in playground design but should be prioritized or considered alongside other safety factors in relevant playground safety guidelines and standards. The results of this survey not only helped inform the 2020 publication of a Thermal Comfort annex to the CSA Group\u27s Children\u27s playgrounds and equipment standard (CAN/CSA Z614) but could also help inform future research and practice globally

    Heat Safety in the Workplace:Modified Delphi Consensus to Establish Strategies and Resources to Protect U.S Workers

    Get PDF
    The purpose of this consensus document was to develop feasible, evidence‐based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus‐based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best‐practices and protect worker health and productivity

    Wearable ultraviolet radiation sensors for research and personal use

    No full text
    Skin cancers are strongly linked to personal exposure to ultraviolet (UV) radiation, yet UV exposure is also the most pre- ventable risk factor. People are exposed to UV rays when they engage in outdoor activities, particularly exercise, which is an important health behavior. Thus, researchers and the general public have shown increasing interest in measuring UV exposure using wearable sensors during outdoor physical activity. However, minimal research exists at the intersection of UV sensors, personal exposure, adaptive behavior due to exposures, and risk of skin damage. Recent years have seen an influx of new consumer-based and research-based UV-sensing technologies with wide-ranging form factors and purposes to fill this research gap, yet a thorough review of available sensors for specific purposes does not exist. Hence, the overall goal of this state-of-the-art review is to synthesize the current academic and gray literature surrounding personal UV-sensing technologies. Peer-reviewed journal articles and “gray literature,” such as working papers, manuals, and UV sensor websites, were reviewed, assessing attributes of UV wearables marketed for research use, personal use, or both. Overall, 13 wearable UV sensors are available for personal use and/or research applications. These sensors vary from electronic to photochromic, with large differences in price, data outputs, accuracy, and precision. Recommendations are provided for which sensors are most suitable for various types of research or public use. Notably, the review findings will help guide researchers in future studies assessing UV exposure during physical activity

    The SSC: A decade of climate-health research and future directions

    No full text
    This year marks the tenth anniversary of the development of the revised Spatial Synoptic Classification, the "SSC", by Scott Sheridan. This daily weather-type classification scheme has become one of the key analytical tools implemented in a diverse range of climatological investigations, including analysis of air quality variability, human health, vegetation growth, precipitation and snowfall trends, and broader analyses of historical and future climatic variability and trends. The continued and expanding use of the SSC motivates a review and comparison of the system's research and geographic foci to date, with the goal of identifying promising areas for future efforts, particularly within the context of human health and climate change. This review also assesses how the SSC has complemented and compares with other current environmental epidemiological studies in weather and health. © 2013 ISB
    corecore