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RESEARCH Open Access

Heat/mortality sensitivities in Los Angeles
during winter: a unique phenomenon in
the United States
Adam J. Kalkstein1*, Laurence S. Kalkstein2, Jennifer K. Vanos3, David P. Eisenman4 and P. Grady Dixon5

Abstract

Background: Extreme heat is often associated with elevated levels of human mortality, particularly across the mid-
latitudes. Los Angeles, CA exhibits a unique, highly variable winter climate, with brief periods of intense heat caused
by downsloping winds commonly known as Santa Ana winds. The goal is to determine if Los Angeles County is
susceptible to heat-related mortality during the winter season. This is the first study to specifically evaluate heat-
related mortality during the winter for a U.S. city.

Methods: Utilizing the Spatial Synoptic Classification system in Los Angeles County from 1979 through 2010, we
first relate daily human mortality to synoptic air mass type during the winter season (December, January, February)
using Welch’s t-tests. However, this methodology is only somewhat effective at controlling for important inter- and
intra-annual trends in human mortality unrelated to heat such as influenza outbreaks. As a result, we use distributed
lag nonlinear modeling (DLNM) to evaluate if the relative risk of human mortality increases during higher
temperatures in Los Angeles, as the DLNM is more effective at controlling for variability at multiple temporal scales
within the human mortality dataset.

Results: Significantly higher human mortality is uncovered in winter when dry tropical air is present in Los Angeles,
particularly among those 65 years and older (p < 0.001). The DLNM reveals the relative risk of human mortality
increases when above average temperatures are present. Results are especially pronounced for maximum and
mean temperatures, along with total mortality and those 65 + .

Conclusions: The discovery of heat-related mortality in winter is a unique finding in the United States, and we
recommend stakeholders consider warning and intervention techniques to mitigate the role of winter heat on
human health in the County.

Keywords: Heat, Human mortality, Winter heat waves, Los Angeles, Air masses, DLNM

Background
The negative impact of heat on human health is well-
established, and extreme heat is often associated with
elevated levels of human mortality, particularly across the
mid-latitudes [1–4]. Despite its seemingly moderate Medi-
terranean climate, previous research has demonstrated that
heat-related illness is considerable across Los Angeles
County, California, largely because of the highly variable
summer climate in the area [5]. During summer, there are

long stretches of benign weather, but these are punctuated
by periods of intense heat often attributed to Santa Ana
wind situations, when temperatures can reach 37 °C or
more, even close to the coast. Such rapid variation in wea-
ther, even more so than the intensity of the heat itself, is re-
sponsible for short-term mortality increases in cities around
the United States; thus, most heat-related deaths are con-
centrated in the northeastern and midwestern part of the
country [6], but also along the Pacific Coast from southern
California up to Seattle [7, 8]. Many of these deaths are pre-
ventable if proper warnings are given to the general popula-
tion, and if effective intervention activities are put into place
by stakeholders in major urban areas [7, 9].
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The unique, highly variable climate across Los Angeles
County also extends into the winter season, and previous
research has demonstrated that larger winter-season
temperature variability is associated with increases in hu-
man mortality across a variety of climate types around the
world [10, 11]. In Los Angeles, the Santa Ana winds,
which are most prevalent in the winter, bring brief periods
of intense dry heat, and occur when surface high pressure
is situated over the Great Basin or Rocky Mountains with
lower pressure off the southern California coast [12]. The
resulting pressure gradient produces a northeast or east
wind, transporting an air mass from the Mojave Desert
into the Los Angeles Metropolitan Area. An overall de-
crease in elevation from east to west warms the air adia-
batically, producing even hotter, drier conditions.
It is plausible that these oppressive thermal conditions

in the winter can be detrimental to human health, par-
ticularly since they are most likely to occur at the time
of year when the local population would be least accli-
matized to intense heat, and thus, most susceptible to
adverse heat-health effects [13, 14]. In fact, there are
winter days in which Los Angeles has exhibited the
highest temperatures of any major city in the U.S., in-
cluding Phoenix, AZ [15]. Interestingly, temperature-
mortality relationships in Barcelona, Spain, which has a
somewhat similar climate to Los Angeles, were stronger
in the winter than summer [16].
The goal of this research is to determine if Los Angeles

County is susceptible to heat-related mortality during the
winter season, when rare but intense heat episodes occur.
More specifically, we relate daily human mortality across
Los Angeles County to both synoptic air mass type and
thermal situations to determine if oppressive atmospheric
conditions result in elevated levels or heightened risk of hu-
man mortality. To our knowledge, this is the first study in
the U.S. to examine heat-related mortality solely in the win-
ter when most mid-latitude cities do not experience tem-
peratures high enough to negatively impact human health.
This study was conducted as part of a larger heat mortality
study commissioned by the Los Angeles County Depart-
ment of Public Health, and results are intended to inform
heath emergency adaptation planners for the department.

Methods
Meteorological data
Weather data are supplied by the National Centers for En-
vironmental Information (NCEI) and include daily max-
imum, minimum, and average temperatures [17]. Each
day was also classified into an air mass category for Los
Angeles using the Spatial Synoptic Classification (SSC),
which requires four-times daily meteorological data in-
cluding temperature, dew point, cloud cover, and pressure
[18]. The SSC, which has been used extensively in cli-
mate/human health analyses [19, 20], places each day into

one of a number of air mass types listed in Table 1. An air
mass is defined as a body of air that is relatively homoge-
neous in terms of temperature, atmospheric moisture, and
other meteorological characteristics along its horizontal
extent [21], and previous research suggests that humans
respond to the simultaneous effects of a large number of
meteorological elements, rather than just individual wea-
ther variables [22]. As air masses represent entire “weather
situations” rather than only individual weather elements,
they present a more comprehensive determination of the
atmospheric environment.
The SSC is the basis of numerous “heat-health warning

systems”, which are currently in use by U.S. National
Oceanic and Atmospheric Administration/National Wea-
ther Service Offices (NWS) and similar entities around
the world to call excessive heat warnings [23–25]. In
addition, the procedure has been utilized in a number of
climate change-health analyses [5, 8, 26]. Thus, the air
mass-based approach is well-suited to examine the poten-
tial impact of heat on human health across Los Angeles
County. Here, we are most interested in the two “oppres-
sive” air masses, which have historically been associated

Table 1 Air mass types in the SSC

Air Mass Definition

Generally Non-Oppressive Air Masses

Dry Polar (DP) Arrives from polar regions and is usually
associated with the lowest temperatures
observed in a region for a particular time of year
as well as clear, dry conditions.

Dry Moderate (DM) Consists of mild and dry air. Often occurs when
air warms as it descends mountain ranges.

Moist Polar (MP) Typically cloudy, humid, and cool. MP air
appears when air over the adjacent cool ocean
is brought inland, frequently during stormy
conditions.

Moist Moderate
(MM)

Considerably warmer and more humid than MP.
The MM air mass typically appears in a zone south
of MP air, near an adjacent stationary front (an area
where warm air moves over a cooler air mass).

Moist Tropical (MT) Warm and very humid. It is typically found in warm
sectors of mid-latitude cyclones or in a return flow
on the western side of a high-pressure area.

Transition (TR) Defined as days in which one weather type yields
to another, based on large shifts in pressure, dew
point, and wind over the course of the day.

Oppressive Hot Air Masses

Dry Tropical (DT) Represents the hottest and driest conditions
found at any location. There are two primary
sources of DT: either it is transported from the
desert regions, such as the Sonoran Desert, or it
is produced by rapidly descending air.

Moist Tropical Plus
(MT+)

Hotter and more humid subset of MT. It is
defined as an MT day where both morning and
afternoon temperatures are above the MT
averages, and thus captures the most
“oppressive” subset of MT days.
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with statistically significantly higher daily mortality when
they are present over a region: dry tropical (DT) and moist
tropical plus (MT+) [5, 27].
The use of the appropriate meteorological station(s) in

this analysis is something that must be given serious con-
sideration. First, there are only three stations that provide
us with the hourly data necessary to develop the SSC: Los
Angeles International Airport (LAX), Burbank Bob Hope
Airport (BUR), and the Marine Corps Air Station in El
Toro (NZJ). All other stations around Los Angeles County
either possess too short a record to be of use, or are of the
“cooperative” type, which only measure maximum and
minimum temperatures and total precipitation for the
day. These are inadequate to develop the detailed air mass
analyses that are required for the SSC. Ultimately, we de-
cided against using LAX as it is influenced by the cooler
ocean due to its proximity to the coast, and thus does not
represent what populations in the interior of Los Angeles
would experience. In addition, the weather record at NZJ
was too short (1989–1997). These issues resulted in BUR
as a natural choice for the meteorological data and air
mass classification, and its proximity to some lower-
income and high population density areas in Los Angeles
County is also beneficial.
Although individual weather variables may vary across

Los Angeles County, the weather situation is almost al-
ways the same throughout the County, with the possible
exceptions being the immediate coast and if a cold front
or some other macro-scale feature is apparent within the
area. This is partially what makes the SSC unique: the
quantification of the weather situation, or air mass, that
is apparent over the region. It is possible that, at high el-
evations, a particular air mass may be so physically
different that it has a dissimilar impact on human well-
being. But considering that most of the population
within Los Angeles County does not live in in unique re-
gions such as Angeles National Forest, we feel comfort-
able with the use of single, detailed weather situations
for this study, similar to other cities that have been ana-
lyzed in past heat-health studies.
Considering that the primary goal of this manuscript is

to examine heat-related mortality throughout the winter,
we only examine the meteorological winter season defined
as December, January, and February spanning from 1979
through 2010, years in which complete human mortality
data and meteorological data are available.

Mortality data
We obtained daily mortality data across Los Angeles
County for December, January, and February, 1979 through
2010, from the Centers for Disease Control and Prevention,
National Vital Statistics System [28]. We did not examine
heat-related mortality based on various International Classi-
fication of Diseases (ICD) code groups, partially because

the use of any “heat-related mortality” designations (ICD-
10 designations of T67.x) has been shown to grossly under-
estimate the number of heat deaths, many of which are
only found by evaluating “spikes” in mortality during hot
weather events [29, 30]. Thus, all-cause mortality was used
here, and it has been shown to be among the most robust
estimators of determining mortality spikes associated with
intense heat events [24, 31]. In addition to total daily mor-
tality counts, we also examined two distinct age groups:
those below 65 and those 65 and above.
An important step in many heat-health studies is to

standardize the mortality data to eliminate as much
non-environmental “noise” as possible. This includes
adjusting for natural seasonal cycles in human mortality,
along with any inter- or intra-annual changes in popula-
tion. To accomplish this goal, and remaining consistent
with the methodology employed by other heat-health
studies [25, 32], we fitted a polynomial function for aver-
age daily mortality for the winter season across the years
of record, representing baseline deaths for each year.
Daily mortality was then expressed as a deviation from
this baseline. However, there is also a within-season pat-
tern associated with winter mortality, and average daily
values across Los Angeles peak in early January. Using a
15-day running mean on day-of-year mortality averages
throughout the winter season, we adjusted for this pat-
tern. The result is a daily mortality value expressed as
departure from average, which in theory, controls for
both long-term and seasonal trends in mortality. Using
Welch’s t-tests, these mortality data were used to com-
pare daily SSC air mass type to mortality anomalies to
determine if any specific air mass type is associated with
statistically significant increases in human mortality.
Although the above methodology has been effective at

examining heat-related mortality during the summer, it
became evident that it was less effective for the winter.
With the notable exception of isolated heat events, sum-
mer mortality in Los Angeles County tends to be relatively
stable, with similar values from year-to-year. However,
winter mortality values can vary wildly, both in timing and
magnitude, primarily as a result of the presence and sever-
ity of influenza outbreaks [33, 34]. Over the December
through February, 1979–2010 period of record, average
daily mortality in Los Angeles peaked in early January with
just over 200 deaths (Fig. 1). However, when similar mor-
tality trends are plotted for each year (we use a 15-day
running mean to smooth the data), the patterns vary dra-
matically. Some years experience high overall mortality,
others low (Fig. 2a, b). Some years have peak mortality
early in the winter season (Fig. 2c), others peak late (Fig.
2d), while a few years exhibit two distinct peaks (Fig. 2e).
In several cases, mortality increases throughout the winter
season (Fig. 2f), while other years experience a steady de-
crease (Fig. 2g).
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Fig. 1 Average daily mortality for Los Angeles County from 1979 through 2010. A 15-day running mean was used to smooth the data

a b

c d

e

f g

Fig. 2 Average daily mortality for Los Angeles County for the winters of 1988/1989 (a), 2009/2010 (b), 1980/1981 (c), 1987/1988 (d), 1992/1993
(e), 2007/2008 (f), and 1991/1992 (g). 15-day running means were used to smooth the data
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Considering the varying trends in winter mortality are
likely due to influenza, which is largely unaffected by
short-term heat waves [35], we attempted to remove the
flu signal by examining only mortality not attributed to
respiratory distress (ICD-10 J00-J99). However, this
methodology also proved ineffective since influenza
tends to increase other causes of death beyond respira-
tory distress, including heart attack and stroke [36].
Thus, yet another alternate methodology was needed.

Distributed lag nonlinear model (DLNM)
After initial analyses of the observational data provided
some insight into the temperature-mortality associa-
tions, we used the DLNM package in R (http://cran.r-
project.org/web/packages/dlnm/) to refine the compari-
sons using all available temperature data rather than
focusing on discrete heat events or specific air mass types.
The DLNM package offers the ability to control for vari-
ability at multiple scales, which makes it the best choice
for analyzing inconsistent variations like those that are ap-
parent in winter mortality for Los Angeles County.
We applied the general linear model regression function

to use daily temperature values (maximum, mean, and
minimum) to create estimations of raw daily mortality
counts. Natural cubic splines allow for normalization with
respect to various time scales. We compiled the model for
the winter months (December, January, February) with two
equally spaced spline knots and 4° of freedom consistent
with previous research [37, 38]. We also employed a cat-
egorical “day of week” spline to account for weekly cycles/
patterns [39]. Initial models were run with 10-day lags, and
3-D plots of relative risk variation with temperature and lag
were used to determine the appropriate lags for remaining
models. The relative risk of mortality (RR) due to the vari-
ous temperature exposures was compared to the location’s
median temperature value for the winter months during
the study period.

Results
Los Angeles displays a generally moderate climate with
an average daily maximum temperature across the
period of record of 20.2 °C and an average daily mini-
mum of 7.7 °C (Table 2). The two historically oppressive
air mass types, DT and MT+ are the two hottest and
occur on 19.1 and 1.8% of days, respectfully. While DT
has higher daily maximum temperatures, both minimum
and average temperatures are higher within MT+.
While a cursory, visual examination of extreme heat

events illustrates that severe heat is frequently associated
with large, immediate increases in human mortality (Fig. 3),
Welch’s t-tests showed that DT air is associated with an
average of 4.4 total excess deaths per day with 3.7 excess
deaths among those 65 years and older (Table 3). Both
values are statistically significant (p < 0.001). The only other

statistically significant values (p < 0.01) are associated with
decreases in average mortality unrelated to heat-related ill-
ness. Mortality during DT air masses is also the most vari-
able and displays the largest standard deviations for both
total mortality and the 65+ age segment.
A 3-D plot of relative risk variation in mortality for

those 65+ with daily maximum temperature at various lag
times shows that anomalously warm days are associated
with immediate responses in mortality and that the re-
sponse is greater than any associated with cooler days
throughout the 10-day period (Fig. 4). As pointed out by
Gasparrini [40], these tri-dimensional plots are valuable as
summaries of the statistical associations, but they cannot
be relied upon for specific inferences [40]. Accordingly,
we are less concerned with the RR values from Fig. 4, as
those values are provided by later results. The purpose of
3-D plot is to justify our chosen lag of 0 days (i.e., mortal-
ity events associated with temperature on the same day).
The RR of mortality at various temperature exposures

shows that risk generally increases with both anomalously
high and low temperatures, although RR is generally more
impacted by excessive heat than excessive cold as indi-
cated by significant effect estimates under higher tempera-
tures (Figs. 5, 6 and 7). The risk of mortality due to
temperature is most robust among total mortality and
those 65+, with significant effect estimates for maximum
temperatures of 12 °C above average for the season (RR = 1.
04 (CI 1.02–1.07), RR = 1.07 (CI 1.03–1.09), respectively)
and mean temperatures of 9 °C above average for the sea-
son (RR = 1.04 (CI 1.01–1.07), RR = 1.07 (CI 1.03–1.10),
respectively). Temperature-mortality RR is generally less
evident for the < 65 age segment and for minimum tem-
peratures (no significant RR estimates).

Discussion
It is apparent that winter heat can have a negative
impact on human health in Los Angeles County, as
demonstrated using two approaches in the current
manuscript. This winter heat-mortality relationship is
an unusual finding among U.S. cities and is an im-
portant discovery, particularly since the Los Angeles
Department of Public Health and other responding
agencies in Los Angeles, including the NWS, were
not aware of such an impact. Further, the impact of
extreme winter heat on human health is substantial.
Excess human mortality is apparent within DT air
masses, a synoptic situation that occurs on 19.1% of
winter days in Los Angeles County. Likewise, relative
risk for human mortality increases significantly with
anomalously high winter temperatures. Considering
the large population across Los Angeles County, these
results suggest that a substantial loss of life can occur
during oppressively hot winter conditions.

Kalkstein et al. Environmental Health  (2018) 17:45 Page 5 of 12

http://cran.r-project.org/web/packages/dlnm
http://cran.r-project.org/web/packages/dlnm


It is not surprising that the elderly (those 65 years and
older) are disproportionately affected by extreme heat.
In fact, both the synoptic (air mass) approach and
DLNM methodologies display strong heat-health rela-
tionships within this age segment. This large response is
consistent with summer excessive heat research, and the
elderly have consistently been found to be more suscep-
tible to extreme heat as a result of a decreased ability of
the body to cope with oppressive conditions [41–43].
However, this effect has not been well-documented for
winter excessive heat.
Why is the Los Angeles urban area so susceptible to

winter heat and associated negative health outcomes?
One reason is the unique nature of Los Angeles’ winter
weather. There is no large city in the U.S. that exhibits
such excessive heat in the winter as Los Angeles. A com-
parison between daily high record temperatures in Los
Angeles as compared to Phoenix during the three winter
months of December, January, and February shows that
when it is hot in winter, Los Angeles easily exceeds
Phoenix in maximum temperature. Both cities have

detailed meteorological records from areas near down-
town for at least 120 years, and when comparing daily
all-time records, Phoenix doesn’t even approach Los
Angeles when it comes to winter heat. Virtually every
day in Los Angeles during the 3 month winter period
exhibits a historical maximum daily temperature record
equaling or exceeding 85 °F (29.4 °C), while in Phoenix,
very few historical maximum daily temperature records
exceed this threshold. The differentials between the two
cities are equally dramatic when comparing maximum
daily records equaling or exceeding 90 °F (32.2 °C). Ex-
cept for late February, when solar angles are increasing,
there are no winter maximum daily temperature records
equaling or exceeding 90 °F in Phoenix. In Los Angeles,
winter maximum daily temperature records can exceed
90 °F, and the monthly maximum temperature records
for the city in January and February are an astonishing
95 °F (35 °C). Local Santa Ana modification of DT air al-
lows for these excessive temperatures to be reached, and
temperatures above 90 °F occur, on average, every few
years in Los Angeles, but usually in consecutive day

Table 3 Average daily mortality (expressed as departure from average) within each air mass type for each age group

Air Mass Average Daily Mortality (Total) Average Daily Mortality (< 65) Average Daily Mortality (> = 65)

Dry Moderate −0.7 (20.3) − 0.2 (9.0) − 0.5 (16.8)

Dry Polar 2.9 (21.2) 2.7 (9.0) 0.3 (17.8)

Dry Tropical 4.4 (22.7) 0.8 (8.5) 3.7 (19.4)

Moist Moderate −2.8 (20.0) −0.7 (8.5) − 2.1 (17.0)

Moist Polar 1.3 (19.7) 0.6 (8.7) 0.8 (16.8)

Moist Tropical − 1.7 (17.5) −0.9 (8.9) −0.8 (14.5)

Transition −0.1 (19.7) 1 (9.0) −1.1 (15.8)

Moist Tropical Plus 0.0 (18.6) −2.3 (10.4) 2.3 (16.0)

Missing −4.5 (18.9) −1.1 (8.2) −3.5 (16.0)

Standard deviations are in parentheses, and statistically significant values are in bold (p < 0.01)

Fig. 3 Total daily mortality in Los Angeles County (bars) and maximum daily temperature (line) from 27 December, 2002 through 14
January, 2003
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strings during an excessive heat event. This is unprece-
dented for any city in the U.S., including winter-warm
areas like South Florida and the Desert Southwest. Also
of interest is the lack of significant mortality response
for MT+ air masses, which are often found to be “offen-
sive” along with the DT air mass in summer in Los
Angeles and other cities [44]. It is clear that MT+ does
not reach high enough temperatures in the winter to
create widespread health problems, while DT occasion-
ally does, particularly with the higher solar loads associ-
ated with DT’s transparent atmosphere.
The urban structure of the Los Angeles Basin is ill-

equipped to handle hot weather situations, which may
contribute to the sensitivity of Los Angeles residents to
negative heat/health outcomes in both summer and win-
ter [45]. Unlike Phoenix and Miami, where housing and

general architecture are more amenable to hot weather
conditions, Los Angeles’ housing composition is gener-
ally less adapted, particularly if home air conditioning is
unavailable [46]. In Los Angeles County, fewer than 50%
of households possess central air conditioning; no doubt
others have window units, but the proportion of homes
with air conditioning is considerably lower in Los
Angeles than in other cities, including Phoenix and most
eastern large cities [45].
Another possible explanation to the observed winter

sensitivity is the “surprise element” of excessive winter
heat. Los Angeles residents are not warned about the
onset of extremely hot weather in winter in a manner
similar to the warnings issued by the NWS and allied
stakeholders in summer. Stakeholders are not prepared
for heat-related illnesses in winter as they are in sum-
mer, nor are most even aware that there is a winter
heat-health problem. Thus, there seems to be a
“stealthy” aspect to the winter heat phenomenon, which
probably plays a role in exacerbating the surprisingly
large negative health impact.
An unexpected finding is the large year-to-year vari-

ation in both the magnitude and timing of winter all-
cause mortality in general (Fig. 2). These patterns, which
are largely caused by the timing and magnitude of infec-
tious disease outbreaks, limit the effectiveness of com-
mon standardization techniques that use a best-fit linear
or polynomial algorithm to control for typical seasonal
patterns in mortality. These year-to-year variations are a
vital component for researchers to consider when con-
ducting human mortality research throughout the winter
influenza season. We strongly recommend that future
winter mortality studies take this year-to-year variability
into account rather than assuming a similar winter pat-
tern for all years, which is what is often done for sum-
mer studies of this type.

Fig. 4 3-D plot of relative risk variation in mortality for those 65+
with daily maximum temperature at various lag times

Table 2 Average daily meteorological conditions at Burbank Bob Hope Airport for each air mass type for the winter season
(December, January, and February) from 1979 to 2010

Air mass Air mass frequency (%) Average maximum
temperature (°C)

Average minimum
temperature (°C)

Average daily
temperature (°C)

Dry Moderate 33.0 19.3 (3.1) 5.5 (2.0) 12.4 (2.2)

Dry Polar 1.9 14.8 (3.0) 3.5 (2.8) 9.2 (2.3)

Dry Tropical 19.1 25.7 (2.8) 9.2 (2.8) 17.4 (2.3)

Moist Moderate 13.8 16.8 (2.4) 9.9 (2.0) 13.3 (1.7)

Moist Polar 5.6 14.5 (2.4) 7.1 (2.1) 10.8 (1.8)

Moist Tropical 8.9 21.2 (2.5) 10.1 (1.9) 15.7 (1.6)

Transition 10.4 20.0 (4.6) 7.2 (3.3) 13.6 (3.3)

Moist Tropical Plus 1.8 24.2 (3.0) 11.8 (1.8) 18.0 (1.6)

Missing 5.5 n/a n/a n/a

Total 100 20.2 (4.5) 7.7 (3.2) 14.0 (3.1)

Standard deviations are in parentheses, and oppressive air masses are in bold
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It remains unclear why some days seem particularly
severe in their impact while others are more benign, as
demonstrated by high standard deviations in human
mortality when DT air is present. One possible explan-
ation is the natural variability in human mortality. Since
heat is not the only factor to impact human health, other
causes of variation may be at play here (e.g. holidays,
large outdoor events, other environmental factors),
resulting in some DT days with only a small change in
human mortality, some days with large spikes in mortal-
ity, and most days with a moderate increase in mortality.
Still, future work is necessary to help isolate any envir-
onmental factors that might lead to increased likelihoods

of elevated mortality, particularly if the human health
outcomes of extreme heat are to be forecast in advance.
Although air pollution is often associated with height-

ened levels of mortality during the presence of hot air
masses [47–51] in Los Angeles, this relationship is likely
only present during summer and spring heat events.
Using the SSC and ground-based stations, Liu et al. [52]
found that the presence of the DT and moist tropical
(MT) weather types in the winter in Los Angeles County
were not associated with elevated levels of particulate
matter < 2.5 μm. Moreover, Santa Ana events tend to be
windy, preventing the stagnation necessary for the build-
up of winter pollution. Thus, it is unlikely pollution is

a

b

c

Fig. 5 Relative risk for mortality of all ages at various daily (a) maximum, (b) mean, and (c) minimum temperatures. The red line is the predicted
value and the gray shading represents the 95% confidence interval
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playing a major role in contributing to the observed in-
creases in human mortality.

Conclusions
A strong relationship between winter heat and human
health, especially among the elderly, has been uncovered in
Los Angeles County, the first such study specifically exam-
ining the susceptibility of the population to heat in a mid-
latitude U.S. city in the winter. We first utilize a synoptic
approach, comparing air mass type to human mortality.
Paying special attention to oppressive, DTand MT+ air, this
methodology allows us to examine an entire weather situ-
ation rather than an evaluation of individual meteorological
variables. Results provide some evidence supporting a

winter heat-health link, particularly among the elderly and
during a DT air mass. However, adjusting for large year-to-
year variations in winter mortality unrelated to heat proved
to be challenging, thus we also applied distributed lag non-
linear modeling to the dataset.
As the DLNM package offers the ability to control for

variability at multiple scales, we were able to determine
that relative risk of human mortality increases signifi-
cantly under excessive winter heat, with the most robust
relationships present for total mortality and those 65+
based on maximum and mean temperatures.
The discovery of heat-related mortality in the middle

of the winter is an important finding, unique to Los
Angeles County in the U.S. When excessive winter heat

a

b

c

Fig. 6 Relative risk for mortality of ages < 65 at various daily (a) maximum, (b) mean, and (c) minimum temperatures. The red line is the
predicted value and the gray shading represents the 95% confidence interval
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in Los Angeles occurs, it can cause substantial increases
in winter mortality, and we believe more robust inter-
vention techniques and increased awareness are neces-
sary to help mitigate the impact of winter heat. Further,
with the recognition of this problem, we encourage ac-
tive collaboration among the various entities in Los
Angeles County and City that are responsible for saving
lives and increasing human well-being.
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