3,848 research outputs found

    Sedimentological studies of the "Ilha de Marchantaria" in the Solimões/Amazon River near Manaus

    No full text
    Sedimentological studies on the Ilha de Marchantaria an island in the Amazon river near Manaus reveal the existence of four different structural main units. A: Sandy channel bars consisting of giant ripples constitute deposits for the formation of islands or newly formed areas of the Varzea. B: Gradual accumulation on the channel bars leads to the formation of point bar ridges which consist chiefly of small-scale ripples. C: Between point bar ridges of different ages there exist swales. During rising water level the river water flows from the downward side into the swales where finegrained sediments are deposited. D: Permanent lakes are formed mainly in the centre of the islands. During low water periods the lakes may be cut of from the river. During high water periods when the whole island is flooded by the river, additional sedimentation takes place especially in the upstream area of the island. There is however, extensive erosion of the banks on the upstream side of the island. By erosion of the upstream end and sedimentation processes on the downstream end the island moves slowly downstream

    A method of isolating organic compounds present in water

    Get PDF
    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent

    The effect of flooding on the exchange of the volatile Câ‚‚-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    Get PDF
    The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2–3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS) and conventional techniques (HPLC, ion chromatography). Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25–1700 nmol m−2 min−1 for ethanol and 5–500 nmol m−2 min−1 for acetaldehyde). Acetic acid emissions reached 12 nmol m−2 min−1. The observed differences in emission rates between the tree species are discussed with respect to their root adaptive strategies to tolerate long term flooding, providing an indirect line of evidence that the root ethanol production is a major factor determining the foliar emissions. Species which develop morphological root structures allowing for enhanced root aeration produced less ethanol and showed much lower emissions compared to species which lack gas transporting systems, and respond to flooding with substantially enhanced fermentation rates and a non-trivial loss of carbon to the atmosphere. The pronounced differences in the relative emissions of ethanol to acetaldehyde and acetic acid between the tree species indicate that not only the ethanol production in the roots but also the metabolic conversion in the leaf is an important factor determining the release of these compounds to the atmosphere

    Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    No full text
    International audienceArtificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980?1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions

    Nitrogen isotope abundance measurements

    Get PDF
    The abundance of the nitrogen isotopes in several sources of nitrogen have been determined. In atmospheric nitrogen the absolute ratio, N14/N15, is 272.0 ± 0.3. Small variations were observed for various sources of compressed gas but the isotopic composition of the nitrogen isotopes of the atmosphere was constant, to 1 part in 7000, in samples collected at different geographical sites and altitudes above these sites

    Seasonal variation in the major cation (Na, K, Mg, and Ca) content of the water of Lago Camaleão, an Amazonian floodplain- lake near Manaus, Brazil

    No full text
    Changes in the major cation content (Na, K, Mg and Ca) of the Lago Camaleão, one of the várzea lakes on an island in the Rio Solimões/Amazonas near Manaus were followed during one year. Comparative changes were also followed in the Rio Solimões. Changes in the electrolyte content of the lake water, presented as total maior cation content, are extremely great during the period of investigation. Nov. 1980 to Nov. 1981, and show a pronounced annual periodicity. During the low water period (Oct. 1981) the ion concentration reached its maximum and was more than 15 times higher than in the river at the same time. With rising water level, in flow of comparatively electrolyte poor water from the river and simultaneously increasing rain fall dilute the water in the lake. In the following months there is a relatively sudden reduction of the electrolyte content of the lake water. By the time of high water the levels have fallen almost to those of the river. With falling water level concentrations of major cations at first increase very slowly followed by an abrupt change within one month, from approx. 20 mg major cations/l to approx. 230 mg/l. Investigation of different lake sections showed that the electrolyte content is not uniform throughout the lake. Concentrations rise from the lake entrance to the inner part of the lake, so that the lake sections distant from the river are up to fifteen times as rich in electrolytes as the river itself. The changes in total ion content are accompanied by marked changes in the chemical composition of the lake water during the year, i. e. in the relative proportions of each of the four elements (Na, K, Mg and Ca). Greatest changes are shown by the element K. The deeper water of the lake during the high water period is richer in K probably due to the release of elements from the decomposition of K-rich terrestrial and aquatic macrophytes. The uptake of large quantities of nutrients from the system for the growth of macrophytic vegetation, the accumulation of nutrients in macrophytes and sediment, and the release of these nutrients during decomposition and resuspension are among the most important factors contributing to the electrolyte budget in the Lago Camaleão

    Carbon Dioxide Fluxes to the Atmosphere From Waters Within Flooded Forests in the Amazon Basin

    Get PDF
    Inundated tropical forests are underrepresented in analyses of the global carbon cycle and constitute 80% of the surface area of aquatic environments in the lowland Amazon basin. Diel variations in CO2 concentrations and exchanges with the atmosphere were investigated from August 2014 to September 2016 in two flooded forests sites with different wind exposure within the central Amazon floodplain (3°23′S, 60°18′W). CO2 profiles and estimates of air–water gas exchange were combined with ancillary environmental measurements. Surface CO2 concentrations ranged from 19 to 329 μM, CO2 fluxes ranged from −0.8 to 55 mmol m−2 hr−1 and gas transfer velocities ranged from 0.2 to 17 cm hr−1. CO2 concentrations and fluxes were highest during the high water period. CO2 fluxes were three times higher at a site with more wind exposure (WE) compared to one with less exposure (WP). Emissions were higher at the WP site during the day, whereas they were higher at night at the WE site due to vertical mixing. CO2 concentrations and fluxes were lower at the W P site following an extended period of exceptionally low water. The CO2 flux from the water in the flooded forest was about half of the net primary production of the forest estimated from the literature. Mean daily fluxes measured in our study (182 ± 247 mmol m−2d−1) are higher than or similar to the few other measurements in waters within tropical and subtropical flooded forests and highlight the importance of flooded forests in carbon budgets

    Effects of regional climate change on brown rust disease in winter wheat

    Get PDF
    Projected climate changes will affect wheat crop production both in the main processes of plant growth and development but also in the occurrences and severities of plant diseases. We assessed the potential infection periods of wheat leaf rust (WLR) at two climatologically different sites in Luxembourg. A threshold-based model, taking hourly values of air temperatures, relative humidity and precipitation during night-time into account, was used for calculating favourable WLR infection days during three periods throughout the cropping season. Field experiments were conducted during the 2003–2013 period at the selected sites. Projected climate data, from a multi model ensemble of regional climate models (spatial resolution 25 km) as well as an additional projection with a higher spatial resolution of 1.3 km, were used for investigating the potential WLR infection periods for two future time spans. Results showed that the infections of WLR were satisfactorily simulated during the development of wheat at both sites for the 2003–2013 period. The probabilities of WLR detection were close to 1 and the critical success index ranged from 0.80 to 0.94 (perfect score = 1 for both). Moreover, the highest proportions of favourable days of WLR infection were simulated during spring and summer at both sites. Regional climate projections showed an increase in temperatures by 1.6 K for 2041–2050 and by 3.7 K for 2091–2100 compared to the reference period 1991–2000. Positive trends in favourable WLR infection conditions occur at both sites more conducive than in the reference period due to projected climatic conditions

    Variation in metapopulation dynamics of a wetland mammal: The effect of hydrology.

    Get PDF
    Key factors affecting metapopulation dynamics of animals include patch size, isolation, and patch quality. For wetland-associated species, hydrology can affect patch availability, connectivity, and potentially habitat quality; and therefore drive metapopulation dynamics. Wetlands occurring on natural river floodplains typically have more dynamic hydrology than anthropogenic wetlands. Our overall objective was to assess the multiyear spatial and temporal variation in occupancy and turnover rates of a semi-aquatic small mammal at two hydrologically distinct wetland complexes. We live-trapped marsh rice rats (Oryzomys palustris) for 3 yr and \u3e50 000 trap nights at nine wetland patches on the Mississippi River floodplain and 14 patches at a reclaimed surface mine in southern Illinois. We used dynamic occupancy modeling to estimate initial occupancy, detection, colonization, and extinction rates at each complex. Catch per unit effort (rice rats captured/1000 trap nights) was markedly higher at the floodplain site (28.1) than the mining site (8.1). We found no evidence that temperature, rainfall, or trapping effort affected detection probability. Probability of initial occupancy was similar between sites and positively related to patch size. Patch colonization probability at both sites was related negatively to total rainfall 3 weeks prior to trapping, and varied across years differently at each site. We found interacting effects of site and rainfall on extinction probability: extinction increased with total rainfall 3 months prior to trapping but markedly more at the floodplain site than at the mining site. These site-specific patterns of colonization and extinction are consistent with the rice rat metapopulation in the floodplain exhibiting a habitat-tracking dynamic (occupancy dynamics driven by fluctuating quality), whereas the mineland complex behaved more as a classic metapopulation (stochastic colonization & extinction). Our study supports previous work demonstrating metapopulation dynamics in wetland systems being driven by changes in patch quality (via hydrology) rather than solely area and isolation

    Lyapunov exponent and natural invariant density determination of chaotic maps: An iterative maximum entropy ansatz

    Full text link
    We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.Comment: 16 pages including 6 figure
    • …
    corecore