1,087 research outputs found

    Three-dimensional macroporous silicon photonic crystal with large photonic band gap

    Get PDF
    Three-dimensional photonic crystals based on macroporous silicon are fabricated by photoelectrochemical etching and subsequent focused-ion-beam drilling. Reflection measurements show a high reflection in the range of the stopgap and indicate the spectral position of the complete photonic band gap. The onset of diffraction which might influence the measurement is discussed

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail

    Quantifying regional biodiversity in the tropics : a case study of freshwater fish in Trinidad and Tobago

    Get PDF
    Funding: European Research Council (AdG BioTIME 250189 and PoC BioCHANGE 727440) (AEM).Extinction rates are predicted to accelerate during the Anthropocene. Quantifying and mitigating these extinctions demands robust data on distributions of species and the diversity of taxa in regional biotas. However, many assemblages, particularly those in the tropics, are poorly characterized. Targeted surveys and historical museum collections are increasingly being used to meet the urgent need for accurate information, but the extent to which these contrasting data sources support meaningful inferences about biodiversity change in regional assemblages remains unclear. Here, we seek to elucidate uncertainty surrounding regional biodiversity estimates by evaluating the performance of these alternative methods in estimating the species richness and assemblage composition of the freshwater fish of Trinidad & Tobago. We compared estimates of regional species richness derived from two freshwater fish datasets: a targeted two year survey of Trinidad & Tobago rivers and historical museum collection records submitted to The University of the West Indies Zoology Museum. Richness was estimated using rarefaction and extrapolation, and assemblage composition was benchmarked against a recent literature review. Both datasets provided similar estimates of regional freshwater fish species richness (50 and 46 species, respectively), with a large overlap (85%) in species identities. Regional species richness estimates based on survey and museum data are thus comparable, and consistent in the species they include. Our results suggest that museum collection data are a viable option for setting reliable baselines in many tropical systems, thereby widening options for meaningful monitoring and evaluation of temporal trends.PostprintPeer reviewe

    Recomendações para produção de uvas de mesa em cultivo protegido na região da Serra Gaúcha.

    Get PDF
    Escolha do terreno. Variedades e porta-enxertos. Espaçamento de plantio. Sistema de condução. Poda. Manejo dos cachos. Manejo do solo. Manejo da irrigação. Manejo das doenças. Oídio. Podridão cinzenta ou Botrytis. Manejo de pragas. Tripes. Mosca-das-frutas. Ácaros. Traça dos cachos. Manejo da cobertura plástica. Microclima sob a cobertura. Detalhes na instalação da cobertura plástica. Cuidados iniciais. Estrutura para cobertura. Detalhes de altura e espaçamento. Evitar excesso de água sob a cobertura. Cuidados na utilização de fungicidas e inseticidas. Detalhes no manejo da vegetação sob a cobertura. Cuidados para aumentar a vida útil da cobertura.bitstream/item/31714/1/doc070.pd

    Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach

    Get PDF
    Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum

    Disruption in structural–functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness

    Get PDF
    Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace (GNW) and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, the prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, that is so-called eigenmodes, was supplemented as potential markers. By analysing time-resolved functional connectivity from functional MRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and subcortical fronto-temporoparietal network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the GNW theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness

    Functionally reversible impacts of disturbances on lake food webs linked to spatial and seasonal dependencies

    Get PDF
    Increasing human impact on the environment is causing drastic changes in disturbance regimes and how they prevail over time. Of increasing relevance is to further our understanding on biological responses to pulse disturbances (short duration) and how they interact with other ongoing press disturbances (constantly present). Because the temporal and spatial contexts of single experiments often limit our ability to generalize results across space and time, we conducted a modularized mesocosm experiment replicated in space (five lakes along a latitudinal gradient in Scandinavia) and time (two seasons, spring and summer) to generate general predictions on how the functioning and composition of multitrophic plankton communities (zoo-, phyto- and bacterioplankton) respond to pulse disturbances acting either in isolation or combined with press disturbances. As pulse disturbance, we used short-term changes in fish presence, and as press disturbance, we addressed the ongoing reduction in light availability caused by increased cloudiness and lake browning in many boreal and subarctic lakes. First, our results show that the top-down pulse disturbance had the strongest effects on both functioning and composition of the three trophic levels across sites and seasons, with signs for interactive impacts with the bottom-up press disturbance on phytoplankton communities. Second, community composition responses to disturbances were highly divergent between lakes and seasons: temporal accumulated community turnover of the same trophic level either increased (destabilization) or decreased (stabilization) in response to the disturbances compared to control conditions. Third, we found functional recovery from the pulse disturbances to be frequent at the end of most experiments. In a broader context, these results demonstrate that top-down, pulse disturbances, either alone or with additional constant stress upon primary producers caused by bottom-up disturbances, can induce profound but often functionally reversible changes across multiple trophic levels, which are strongly linked to spatial and temporal context dependencies. Furthermore, the identified dichotomy of disturbance effects on the turnover in community composition demonstrates the potential of disturbances to either stabilize or destabilize biodiversity patterns over time across a wide range of environmental conditions

    The impact of hyperactivity and leptin on recovery from anorexia nervosa

    Get PDF
    In anorexia nervosa (AN), hyperactivity is observed in about 80% of patients and has been associated with low leptin levels in the acute stage of AN and in anorexia animal models. To further understand the importance of this correlation in AN, we investigated the relationship between hypoleptinaemia and hyperactivity in AN patients longitudinally and assessed their predictive value for recovery

    Examining the Effects of One- and Three-Dimensional Spatial Filtering Analyses in Magnetoencephalography

    Get PDF
    Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This paper evaluates two alternative methods of spatial filter construction and application. It demonstrates how encoding different requirements into the design of these filters has an effect on the results obtained. The analyses presented demonstrate the potential value of implementations which examine the timeseries projections in multiple orientations at a single location by showing that beamforming can reconstruct predominantly radial sources in the case of a multiple-spheres forward model. The accuracy of source reconstruction appears to be more related to depth than source orientation. Furthermore, it is shown that using three 1-dimensional spatial filters can result in inaccurate source-space time series reconstruction. The paper concludes with brief recommendations regarding reporting beamforming methodologies in order to help remove ambiguity about the specifics of the techniques which have been used
    corecore