16 research outputs found

    Committing to ecological restoration: Efforts around the globe need legal and policy clarification

    Get PDF
    At the September 2014 United Nations Climate Summit, governments rallied around an international agreement—the New York Declaration on Forests—that underscored restoration of degraded ecosystems as an auspicious solution to climate change. Ethiopia committed to restore more than one-sixth of its land. Uganda, the Democratic Republic of Congo, Guatemala, and Colombia pledged to restore huge areas within their borders. In total, parties committed to restore a staggering 350 million hectares by 2030.Fil: Suding, Kathering. State University Of Colorado-boulder; Estados UnidosFil: Higgs, Eric. University Of Victoria; CanadáFil: Palmer, Margaret. University of Maryland; Estados UnidosFil: Callicott, J. Baird. University Of North Texas; Estados UnidosFil: Anderson, Christopher Brian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Baker, Matthew. University Of Maryland; Estados UnidosFil: Gutrich, John J.. Southern Oregon University; Estados UnidosFil: Hondula, Kelly L.. University of Maryland; Estados UnidosFil: Lafevor, Matthew C.. University of Maryland; Estados UnidosFil: Larson, Brendon M. H.. University Of Waterloo; CanadáFil: Randall, Alan. Ohio State University; Estados Unidos. University Of Sidney; AustraliaFil: Ruhl, J. B.. Vanderbilt University; Estados UnidosFil: Schwartz, Katrina Z. S.. Woodrow Wilson International Center for Scholars; Estados Unido

    Larval growth in polyphenic salamanders: making the best of a bad lot

    Full text link
    Polyphenisms are excellent models for studying phenotypic variation, yet few studies have focused on natural populations. Facultative paedomorphosis is a polyphenism in which salamanders either metamorphose or retain their larval morphology and eventually become paedomorphic. Paedomorphosis can result from selection for capitalizing on favorable aquatic habitats (paedomorph advantage), but could also be a default strategy under poor aquatic conditions (best of a bad lot). We tested these alternatives by quantifying how the developmental environment influences the ontogeny of wild Arizona tiger salamanders (Ambystoma tigrinum nebulosum). Most paedomorphs in our study population arose from slow-growing larvae that developed under high density and size-structured conditions (best of a bad lot), although a few faster-growing larvae also became paedomorphic (paedomorph advantage). Males were more likely to become paedomorphs than females and did so under a greater range of body sizes than females, signifying a critical role for gender in this polyphenism. Our results emphasize that the same phenotype can be adaptive under different environmental and genetic contexts and that studies of phenotypic variation should consider multiple mechanisms of morph production

    Incorporating Carbon Storage into the Optimal Management of Forest Insect Pests: A Case Study of the Southern Pine Beetle (Dendroctonus Frontalis Zimmerman) in the New Jersey Pinelands

    No full text
    Forest insect pest disturbance is increasing in certain areas of North America as many insect species, such as the southern pine beetle, expand their range due to a warming climate. Because insect pests are beginning to occupy forests that are managed for multiple uses and have not been managed for pests before, it is becoming increasingly important to determine how forests should be managed for pests when non-timber ecosystem services are considered in addition to traditional costs and revenues. One example of a service that is increasingly considered in forest management and that may affect forest pest management is carbon sequestration. This manuscript seeks to understand whether the incorporation of forest carbon sequestration into cost-benefit analysis of different forest pest management strategies affects the financially optimal strategy. We examine this question through a case study of the southern pine beetle (SPB) in a new area of SPB expansion, the New Jersey Pinelands National Reserve (NJPR). We utilize a forest ecology and economics model and include field data from the NJPR as well as outbreak probability statistics from previous years. We find under the majority of scenarios, incorporating forest carbon sequestration shifts the financially optimal SPB management strategy from preventative thinning toward no management or reactionary management in forest stands in New Jersey. These results contradict the current recommended treatment strategy for SPB and signify that the inclusion of multiple ecosystem services into a cost-benefit analysis may drastically alter which pest management strategy is economically optimal
    corecore