2,763 research outputs found

    Transient Astrophysical Pulses and Quantum Gravity

    Full text link
    Searches for transient astrophysical pulses could open an exciting new window into the fundamental physics of quantum gravity. In particular, an evaporating primordial black hole in the presence of an extra dimension can produce a detectable transient pulse. Observations of such a phenomenon can in principle explore the electroweak energy scale, indicating that astrophysical probes of quantum gravity can successfully complement the exciting new physics expected to be discovered in the near future at the Large Hadron Collider.Comment: 7 pages, This essay received an honorable mention in the Gravity Research Foundation Essay Competition, 200

    Interstellar Scintillation of the Polarized Flux Density in Quasar, PKS 0405-385

    Full text link
    The remarkable rapid variations in radio flux density and polarization of the quasar PKS 0405-385 observed in 1996 are subject to a correlation analysis, from which characteristic time scales and amplitudes are derived. The variations are interpreted as interstellar scintillations. The cm wavelength observations are in the weak scintillation regime for which models for the various auto- and cross-correlations of the Stokes parameters are derived and fitted to the observations. These are well modelled by interstellar scintillation (ISS) of a 30 by 22 micro-as source, with about 180 degree rotation of the polarization angle along its long dimension. This success in explaining the remarkable intra-day variations (IDV)in polarization confirms that ISS gives rise to the IDV in this quasar. However, the fit requires the scintillations to be occurring much closer to the Earth than expected according to the standard model for the ionized interstellar medium (IISM). Scattering at distances in the range 3-30 parsec are required to explain the observations. The associated source model has a peak brightness temperature near 2.0 10^{13}K, which is about twenty-five times smaller than previously derived for this source. This reduces the implied Doppler factor in the relativistic jet, presumed responsible to 10-20, high but just compatible with cm wavelength VLBI estimates for the Doppler factors in Active Galactic Nuclei (AGNs).Comment: 43 pages 15 figures, accepted for ApJ Dec 200

    Statistical mechanics of mutual information maximization

    Get PDF
    An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed (Becker S. and Hinton G., Nature, 355 (1992) 161). By exploiting a formal analogy to supervised learning in parity machines, the theory of zero-temperature Gibbs learning for the unsupervised procedure is presented for the case that the networks are perceptrons and for the case of fully connected committees

    Convective activity in a Martian magma chamber recorded by P-zoning in Tissint olivine

    Get PDF
    The Tissint Martian meteorite is an unusual depleted olivine‐phyric shergottite, reportedly sourced from a mantle‐derived melt within a deep magma chamber. Here, we report major and trace element data for Tissint olivine and pyroxene, and use these data to provide new insights into the dynamics of the Tissint magma chamber. The presence of irregularly spaced oscillatory phosphorous (P)‐rich bands in olivine, along with geochemical evidence indicative of a closed magmatic system, implies that the olivine grains were subject to solute trapping caused by vigorous crystal convection within the Tissint magma chamber. Calculated equilibration temperatures for the earliest crystallizing (antecrystic) olivine cores suggest a Tissint magma source temperature of 1680 °C, and a local Martian mantle temperature of 1560 °C during the late Amazonian—the latter being consistent with the ambient mantle temperature of Archean Earth

    Statistical analyses of long-term variability of AGN at high radio frequencies

    Full text link
    We present a study of variability time scales in a large sample of Active Galactic Nuclei at several frequencies between 4.8 and 230 GHz. We investigate the differences of various AGN types and frequencies and correlate the measured time scales with physical parameters such as the luminosity and the Lorentz factor. Our sample consists of both high and low polarization quasars, BL Lacertae objects and radio galaxies. The basis of this work is the 22 GHz, 37 GHz and 87 GHz monitoring data from the Metsahovi Radio Observatory spanning over 25 years. In addition,we used higher 90 GHz and 230 GHz frequency data obtained with the SEST-telescope between 1987 and 2003. Further lower frequency data at 4.8 GHz, 8 GHz and 14.5 GHz from the University of Michigan monitoring programme have been used. We have applied three different statistical methods to study the time scales: The structure function, the discrete correlation function and the Lomb-Scargle periodogram. We discuss also the differences and relative merits of these three methods. Our study reveals that smaller flux density variations occur in these sources on short time scales of 1-2 years, but larger outbursts happen quite rarely, on the average only once in every 6 years. We do not find any significant differences in the time scales between the source classes. The time scales are also only weakly related to the luminosity suggesting that the shock formation is caused by jet instabilities rather than the central black hole.Comment: 19 pages, 12 figures, Accepted for publication in A&

    On the influence of the Sun on the rapid variability of compact extragalactic sources

    Full text link
    Starting from December 2004, a program for the monitoring of intraday variable sources at a frequency of 5 GHz was performed at the Urumqi Observatory. The analysis of the variability characteristics of the flat-spectrum radio source AO 0235+164 revealed the existence of an annual cycle in the variability amplitude. This appears to correlate with the solar elongation of the source. A thorough analysis of the results of the MASIV IDV survey --- which provides the variability characteristics of a large sample of compact radio sources --- confirms that there is a small but detectable component of the observed fractional modulation which increases with decreasing solar elongation. We discuss the hypothesis that the phenomenon is related to interplanetary scintillation.Comment: 10 pages, 12 figures and 2 tables. Accepted for publication in Astronomy and Astrophysic

    The magnetized medium around the radio galaxy B2 0755+37: an interaction with the intra-group gas

    Full text link
    We explore the magneto-ionic environment of the isolated radio galaxy B2 0755+37 using detailed imaging of the distributions of Faraday rotation and depolarization over the radio source from Very Large Array observations at 1385,1465 and 4860 MHz and new X-ray data from XMM-Newton. The Rotation Measure (RM) distribution is complex, with evidence for anisotropic fluctuations in two regions. The approaching lobe shows low and uniform RM in an unusual `stripe' along an extension of the jet axis and a linear gradient transverse to this axis over its Northern half. The leading edge of the receding lobe shows arc-like RM structures with sign reversals. Elsewhere, the RM structures are reasonably isotropic. The RM power spectra are well described by cut-off power laws with slopes ranging from 2.1 to 3.2 in different sub-regions. The corresponding magnetic-field autocorrelation lengths, where well-determined, range from 0.25 to 1.4 kpc. It is likely that the fluctuations are mostly produced by compressed gas and field around the leading edges of the lobes. We identify areas of high depolarization around the jets and inner lobes. These could be produced by dense gas immediately surrounding the radio emission containing a magnetic field which is tangled on small scales. We also identify four ways in which the well known depolarization (Faraday depth) asymmetry between jetted and counter-jetted lobes of extended radio sources can be modified by interactions with the surrounding medium.Comment: 16 pages, 13 figures, accepted for publication in MNRAS. Full resolution paper available at: ftp://ftp.ira.inaf.it/pub/outgoing/guidetti/ Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO
    corecore