
Europhys. Lett., 49 (5), pp. 685–691 (2000)

EUROPHYSICS LETTERS 1 March 2000

Statistical mechanics of mutual information maximization

R. Urbanczik

Neural Computing Research Group, Aston University
Aston Triangle, Birmingham B4 7ET, UK

(received 14 May 1999; accepted in final form 14 December 1999)

PACS. 87.10.+e – General theory and mathematical aspects.
PACS. 05.50.+q – Lattice theory and statistics (Ising, Potts, etc.).
PACS. 64.60.Cn – Order-disorder transformations; statistical mechanics of model systems.

Abstract. – An unsupervised learning procedure based on maximizing the mutual information
between the outputs of two networks receiving different but statistically dependent inputs is
analyzed (Becker S. and Hinton G., Nature, 355 (1992) 161). By exploiting a formal analogy
to supervised learning in parity machines, the theory of zero-temperature Gibbs learning for
the unsupervised procedure is presented for the case that the networks are perceptrons and for
the case of fully connected committees.

It has long been realized that information theory can provide a useful conceptual framework
for unsupervised learning in neural networks. The basic idea is to treat the network as a
channel of limited capacity and to adapt the parameters of the network to optimize the
information transfer. Different optimality criteria exist, and a discussion of such criteria and
some equivalences between them from the perspective of statistical physics is given in [1, 2].
In most cases, however, the information theoretic approach has led to useful learning

algorithms only for single-layer networks. An exception is the proposal by Becker and Hinton
(see [3], a review is given in [4]) which builds on ideas from computational linguistics. They
assume two different but statistically dependent modes of input, ξ1 and ξ2, and each of these
modes is processed by a different network. Due to the statistical dependency, some features
of one input mode will be predictable given the other input mode, and the goal of training is
to discover such mutually predictable features by maximizing the mutual information of the
outputs of the two networks.
It is worthwhile mentioning that in the context of sensory processing the scenario con-

sidered by Becker and Hinton is by no means artificial. For instance, simultaneous auditory
(ξ1) and visual (ξ2) sensations are statistically dependent since they may be caused by the
same object, and such dependences obviously provide useful information about the nature of
the object. Statistical dependences also arise within one sensory system at different times: In
speech the current phoneme (ξ1) is to a certain extent predictable from the preceding ones (ξ2)
and the same phenomenon re-occurs at the level of words.
In an application to vision, a simulation in [3] shows that two multilayer networks can learn

higher-order features by maximizing the mutual information of their outputs. They learn to
estimate the distance of an object from the stereo disparity which may arise when the object
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is seen by two eyes. Formally, each network has to detect whether one half of its input is a
shifted copy of its other half. Shift is not a linearly separable concept, and thus could not
have been learned by unsupervised learning procedures such as principal-component analysis
or competitive learning [5] which are restricted to single-layer networks.
While the proposal by Becker and Hinton provides a conceptually elegant “model of cortical

self-organization” [4], practical experience shows that this learning scenario can be compu-
tationally quite difficult [6]. As a first step in theoretically analyzing mutual information
maximization, this letter examines its sample complexity, that is the relationship between the
performance of the networks on a training set which is a sample of the input distribution
and their off-sample performance. We initially assume that the two networks are perceptrons
and establish a formal analogy between mutual information maximization and a supervised
learning problem for parity machines. Focusing on the case that some feature of one input is
perfectly predictable given the other input, learning curves for zero-temperature Gibbs learn-
ing are calculated. In a second step, the analysis is extended to the situation when the two
networks are fully connected committee machines.
We consider the case that the outputs σi(ξi) of the two networks are discrete and then

their mutual information I(σ1, σ2) is given by

I(σ1, σ2) =
∑
y1,y2

pσ1σ2(y1, y2) ln
pσ1σ2(y1, y2)
pσ1(y1)pσ2(y2)

. (1)

The sum runs over all possible output values, pσ1,σ2(y1, y2) is the joint probability that
(σ1, σ2) = (y1, y2) and pσi

denote the corresponding marginal probabilities, e.g., pσ1(y1) =∑
y2
pσ1,σ2(y1, y2). Thus I(σ1, σ2) is a distance measure (KL-divergence) between the joint

distribution of the outputs and the product distribution of the marginals; it vanishes when σ1

and σ2 are statistically independent. In terms of the joint and marginal entropies the mu-
tual information may be written as I(σ1, σ2) = −H(σ1, σ2) + H(σ1) + H(σ2), where, e.g.,
H(σ1) = −∑

y1 pσ1(y1) ln pσ1(y1).
The goal of the learning process is to find σi within given classes of networks Σi such

that the joint distribution of σ1(ξ1) and σ2(ξ2) maximizes (1). As usual, learning is based
on a training set of inputs with elements (ξµ

1 , ξ
µ
2 ), µ = 1, . . . , P , drawn independently of

the input distribution, and we shall focus on the learning strategy that chooses σi ∈ Σi to
maximize (1) on the empirical distribution given by the training set, that is for pσ1σ2(y1, y2) =
P−1

∑P
µ=1

∏2
i=1 δyi,σi(ξ

µ
i
).

An important property of (1) is that as long as one just considers a single instance of an
input pair and a corresponding pair of outputs, it is not possible to decide whether this specific
input/output relationship contributes to maximizing the mutual information. So, in contrast
to other learning scenarios, I(σ1, σ2) is not the average of some objective function L over all
samples, I(σ1, σ2) �= 〈L(σ1(ξ1), σ2(ξ2))〉(ξ1,ξ2)

. To avoid this problem, we shall consider only
the case of binary outputs, σi ∈ {−1, 1} and make the following assumptions:

a) The marginals of the input distribution are point symmetric around 0, pξi
(xi)=pξi

(−xi).

b) The function implemented by the networks are odd, σi(−xi) = −σi(xi).

As a consequence of the assumptions, the marginal entropies of the outputs will be inde-
pendent of the choice of σi and maximal, H(σi) = ln 2. In general, controlling the marginal
entropies for perceptron-like architectures is just a question of adjusting the bias, and one will
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not expect this to dominate the complexity of the learning process. Rewriting (1) in terms of
the conditional probability pσ1σ2(y1|y2) and using a) and b) yields

I(σ1, σ2) =
∑
y1

pσ1σ2(y1|1) ln pσ1σ2(y1|1) + ln 2 . (2)

So to maximize I(σ1, σ2) one would ideally choose σi so that pσ1σ2(y1|1) is 0 or 1, that is
the relationship between σ1(ξ1) and σ2(ξ2) should be functional. But in general, due to the
nature of the input distribution and/or the choice of network architecture, such a functional
relationship may not be achievable. However, even in these cases I(σ1, σ2) is maximized by
maximizing (or, equivalently, minimizing) the expectation of the product σ1σ2. Hence the
maximization of I(σ1, σ2) becomes equivalent to a supervised learning problem for the parity
architecture obtained by combining the two networks. The only difference to the standard
case is that we are only given examples for which σ1(ξ

µ
1 )σ2(ξ

µ
2 ) = 1.

To analyze mutual information maximization, one thus may consider the partition function

Z =
∫
dσ1dσ2 exp

[
−β

∑
µ

θ(−σ1(ξ
µ
1 )σ2(ξ

µ
2 ))

]
(3)

in the limit β → ∞. Here dσi relates to some prior measure on the space of all networks Σi

and θ is the Heaviside step function. We shall focus on realizable cases and assume that
the statistical dependence between ξ1 and ξ2 is such that τ1(ξ1) = τ2(ξ2) holds for suitable
features τi ∈ Σi. This means that the joint density of the inputs is related to the marginals
via

pξ1ξ2(x1, x2) = 2θ (τ1(x1)τ2(x2)) pξ1(x1)pξ2(x2). (4)

For the moments of Z one then finds for β → ∞

〈Zn〉 =
∫ n∏

a=1

(dσa
1dσ

a
2 )

〈
n∏

a=1

θ(σa
1 (ξ1)σ

a
2 (ξ2))

〉P

(ξ1,ξ2)

=

=
∫ n∏

a=1

(dσa
1dσ

a
2 )

〈
2θ (τ1(ξ1)τ2(ξ2))

n∏
a=1

θ(σa
1 (ξ1)σ

a
2 (ξ2))

〉P

ξ1,ξ2

, (5)

where the average on the RHS is over the joint distribution of ξ1 and ξ2 on the first line, and
over the product of the marginals on the second line. The last average in (5) could also be
written as 〈∏n

a=1 θ(σ
a
1 (ξ1)σ

a
2 (ξ2)τ1(ξ1)τ2(ξ2))〉ξ1,ξ2

and this shows that the moments are the
same as for the standard supervised learning problem for the corresponding parity network.
To simplify the calculations, we shall assume that the τi are picked from the same distribution
as the σi and perform an average of 〈Zn〉 over the choice of τi to obtain

〈〈Zn〉〉 =
∫ n∏

a=0

(dσa
1dσ

a
2 )

〈
2

n∏
a=0

θ(σa
1 (ξ1)σ

a
2 (ξ2))

〉P

ξ1,ξ2

, (6)

where the τi are now the 0-th replica.
While the calculation of the partition function is very similar to the supervised case, in

mutual information maximization we are interested in how well the two networks extract the
features arising from the statistical dependence. Consequently we define the generalization
error of the i-th network to be

εi = min{〈θ(σi(ξi)τi(ξi))〉ξi
, 〈θ(−σi(ξi)τi(ξi))〉ξi

} , (7)
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Fig. 1 – (a) Learning curves for the case when the two networks are perceptrons with N1/N2 = 10
and P = αN1. The upper curve shows ε1, the lower one ε2. (b) Learning curves for the case when
the two networks are large committee machines. The upper curve is for N1 = N2 and P = α̃N1, the
lower curve is for K1N1 = K2N2 and P = αK1N1. In both cases ε1 = ε2 = ε.

reflecting the fact that the pair (−τ1,−τ2) is equivalent to (τ1, τ2).
We first consider the case that the two networks are perceptrons, so σi(xi) = sign(JT

i xi),
where Ji, xi ∈ IRNi . We assume that the prior on the class of networks is given by the uniform
density on the unit sphere, JT

i Ji = 1, and that the marginal densities of the inputs pξi
are

Gaussian with zero mean and variance Ni. Assuming replica-symmetry, it is now straightfor-
ward to evaluate (6) for large Ni in the limit n → 0 and find

〈〈lnZ〉〉 ∼ P ln 2 + max
q1,q2

P G

(√
q1

1− q1
,

√
q2

1− q2

)
+N1S(q1) +N2S(q2) . (8)

Here S(q) = 1
2q +

1
2 ln(1− q) and G is given by

G(Q1, Q2) = 2 〈H(Q1z1, Q2z2) lnH(Q1z1, Q2z2)〉z1,z2
,

H(z1, z2) = H(z1)H(z2) +H(−z1)H(−z2) , (9)

where the zi are real, independent and normally distributed, and H(z) = 1
2erfc(z/

√
2). The qi

represent the replica-symmetric weight vectors in different replicas, qi = Ja
i

TJb
i , and since we

averaged over the features τi, this is also the overlap between a student in version space and
the weight vector defining τi. Hence the generalization errors are εi = 1

π arccos qi.
The balanced case N1 = N2 has already been considered in the literature on supervised

learning in parity machines [7,8]. Due to the symmetry of the problem the two generalization
errors are equal, ε1 = ε2. To achieve nontrivial behavior, the sample size P must scale with
the system size, and we set P = αN1. The remarkable feature of the learning curve is that for
α < π2/4 no generalization occurs and εi = 1

2 . Above this critical value there is a continuous
transition to nontrivial generalization and for large α the same asymptotic behavior as in
realizable supervised learning for a single perceptron is found: εi = 0.62/α in this limit.
In mutual information maximization, however, it also makes good sense to consider the

case where one of the features is harder to learn than the other one, and a model for this is
to assume that N1 is larger than N2. We set N1/N2 = κ and consider the learning curve for
the scaling P = αN1. The transition to nontrivial generalization now occurs at the critical
value α = π2

4 κ
− 1

2 . The learning curves for the case that κ = 10 (fig. 1a) show that the two
generalization errors now behave differently. In particular beyond the transition ε2 < ε1 and ε2
decays rather quickly with α. This behavior of ε2 reflects the fact that the number of free
parameters in the second networks is smaller than in the first network.
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It is interesting to take this to extremes and consider the situation were N1 � N2 � 1.
Since the entropy function S is quadratic for small arguments, a scaling q1 = O(

√
N2/N1) and

q2 = O(1) in eq. (8) yields entropy terms N1S(q1) and N2S(q2) of the same magnitude O(N2).
Using this scaling for the order parameters yields that the energy term P ln 2 + PG(Q1, Q2)
is also of order N2 when P = O(

√
N1N2). Hence the scale of the learning curve for the easier

problem is not simply dominated by the harder one and the scaling P = α
√
N1N2, q1 =

O(
√
N2/N1) yields a well-defined extremal problem. On this scale a second-order transition

to nontrivial generalization for ε2 is found at α = π2/4. This is the same numerical value as
in the balanced case since both results are related to the qi → 0 expansion of (8). Beyond
the transition, however, ε2 behaves quite differently and for large α a fast asymptotic decay
of ε2 = π2

4 α
−2 is found. Of course to leading order ε1 = 1

2 for this scaling of P .
We next turn to the case that the two networks are fully connected committee machines

with Ki hidden units. So σi(xi) = sign(
∑Ki

j=1 sign(J
T
ijxi)) for Jij , xi ∈ IRNi . The target

features τi are assumed to have the same structure as the students, and we assume, as in
the case of the perceptron, Gaussian marginal distributions of the inputs with zero mean and
variance Ni. In contrast to the case of the perceptron the learning curves will now depend on
the choice of the weight vectors Bij ∈ IRNi for the target features τi, and in particular on their
overlaps BT

ijBik. We shall consider the orthogonal case here and thus assume that the Bij are
picked from the uniform density on the set of vectors with BT

ijBik = δjk. We then need to make
the same assumption about the prior distribution of student weight vectors Jij to preserve
the symmetry which allows a simple calculation of the moments of the partition function (6).
This may seem slightly artificial, and one might instead wish to consider for the students the
less restrictive prior of the uniform distribution on the set JT

ijJij = 1. However, for supervised
learning in the committee machine with an orthogonal teacher, it was found in [9] that at zero
temperature the weight vectors of a typical student in version space are in fact orthogonal
as well. Similarly, in the present case it is possible to calculate the quenched average of lnZ
for the less restrictive prior using eq. (5). This yields that for orthogonal Bij a solution of
the saddle point equations arising from (5) is given by orthogonal students (Ja

ij
TJa

ik = δjk).
So for orthogonal τi one will not expect the choice between the two priors on the students to
influence the learning curves.
To simplify the exposition, we thus assume the more restrictive prior, JT

ijJik = δjk and we
further assume the replica- and site-symmetric parametrization of the version space

Ja
ij

TJb
ik = pi/Ki + δjkqi , for a �= b. (10)

We consider the limit of many hidden units (1 � Ki � Ni) since (10) then implies that the

joint distribution of the fields K− 1
2

i

∑Ki

j=1 sign(J
a
ij

Txi) will become Gaussian [10]. In this limit
the average of lnZ is given by

〈〈lnZ〉〉 ∼ P ln 2 + max
q1,q2

P G

(√
qe
1

1− qe
1

,

√
qe
2

1− qe
2

)
+

+
2∑

i=1

Ni

(
(Ki − 1)S(qi) + S(pi + qi)

)
. (11)

Here qe
i ≡ 2

π (pi+arcsin qi) and the expressions for G and S are the same as in the case of the
perceptron (8). Further the generalization errors are given by εi = 1

π arccos q
e
i .

For the large committee the learning curves show a nontrivial behavior on different scales
and we shall exclude some of the more extreme cases by assuming that the number of free
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parameters in one network is much larger than the number of input dimensions of the other
network, KiNi � Nj .
We first assume that the sample size is relatively small and set P = α̃N1. On this scale the

system is in a permutation symmetric phase, qi = 0, since P � KiNi. As for the perceptron
the learning curve is initially flat but the transition to nontrivial generalization now occurs
at the higher critical value of α̃ = π4

16κ
− 1

2 , where again κ = N1/N2. In the limit of large α̃,
assuming κ = O(1), the generalization errors decay to a next plateau value, εi = 1

π arccos
2
π .

An example of this behavior is shown in fig. 1b.
For larger sample sizes, when P � Ni, the order parameters satisfy the relation pi = 1−qi

to order O(Ni/P ). Hence the generalization behavior depends on the architecture of the
networks only via the number of free parameters KiNi.
Specializing to the case K1N1 = K2N2 and setting P = αK1N1 yields that initially the

generalization errors are constant at the plateau value found in the α̃ → ∞ limit (cf. fig. 1b).
At α = 15.4 a discontinuous transition to better generalization occurs, and for large α the
asymptotic behavior is to leading order εi = 1.25/α. This is the same asymptotics as in the
case of realizable supervised learning for the committee [9].
Remarkably, for the extremely unbalanced case K1N1 � K2N2, this imbalance is not

reflected in the scale of the learning curve for ε2. Setting P = αK2N2, one finds that ε1 =
ε2 = 1

π arccos
2
π holds only initially. At α = 20.4 a discontinuous transition to a lower value

occurs in ε2, while the value of ε1 is constant for all α. Asymptotically ε2 then decays to zero as
ε2 = 3.52/α. The reason for this behavior is that the first network provides useful information
about the target features since ε1 < 1

2 . The present scenario is however not equivalent to the
case where the second network is trained with a noisy teacher. This would lead to frustration
in the second network and its generalization error would not decay to zero when training at
zero temperature [10]. The difference to the case of a fixed noisy teacher is that in the present
scenario the version space of the first network is shrinking with increasing α.
The above analysis shows that while the asymptotic decay of the generalization errors can

be quite fast, in the initial stages of learning long plateaus occur. This may explain some of the
computational difficulties experienced when applying mutual information maximization [6].
Such algorithmic issues have also been addressed in the context of supervised online learning
in parity machines [11]. It was found that even for the optimal, within the class of algorithms
considered, learning procedure no generalization occurs when the sample size is on the order
of the system size unless knowledge about the target rule is already given to the networks by
choosing nonrandom initial conditions. So it will be important to consider a wider class of
algorithms for this problem.
A further issue is the extension of the present analysis from binary to m-ary classification.

In the present case it was reasonable to consider a situation where the marginal entropies of
the outputs are independent of the weights. This special feature of the binary case makes
it possible to express the optimization problem for the mutual information in terms of the
sample average of an objective function. For m > 2 this no longer holds, and an interesting
question is how this technical difference is reflected in the learning behavior.

∗ ∗ ∗

Part of this work was carried out during the Statphys-seminar at the Max Planck Institute
for the Physics of Complex Systems in Dresden.
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