107 research outputs found

    Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions

    Get PDF
    Purpose: The proliferation of cone-beam CT (CBCT) has created interest in performance optimization,with x-ray scatter identifie among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configuration suggests that not all configuration are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, effica y of antiscatter grids, guide system design, and augment development of scatter correction. Methods: A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-pane detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-todetector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuratio was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70–280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment. Results: Variance reduction yielded improvements in MC simulation efficien y ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significan acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficien y). The benefi of a more extended geometry was evident by virtue of a larger air gap—e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficien y was higher for configuration with shorter air gap due to a broader angular distribution of scattered photons—e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configuration but had limited improvement on scatterinduced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration) resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation). Conclusions: A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configuration in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficia (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter.The research was supported by academic-industry partnership with Carestream Health Inc. (Rochester, NY) and National Institutes of Health (NIH) Grant No. 2R01-CA-112163. A. Sisniega is supported by FPU grant (Spanish Ministry of Education), AMIT project, RECAVA-RETIC Network, Project Nos. TEC2010-21619- C04-01, TEC2011-28972-C02-01, and PI11/00616 (Spanish Ministry of Science and Education), ARTEMIS program (Comunidad de Madrid), and PreDiCT-TB partnership.Publicad

    Relative dosimetry using active matrix flatâ panel imager (AMFPI) technology

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135008/1/mp8649.pd

    Noise aliasing and the 3D NEQ of flat-panel cone-beam CT: Effect of 2D∕3D apertures and sampling

    No full text
    The ability to tune an imaging system to be optimal for a specific task is an essential component of image quality. This article discusses the ability to tune the noise-equivalent quanta (NEQ) of cone-beam computed tomography (CBCT) by managing noise aliasing through binning of data at different points in the reconstruction cascade. The noise power spectrum, modulation transfer function, and NEQ for CBCT are calculated using cascaded systems analysis. Binning is treated as a modular process, insertable between any two stages (in both the 2D projection domain and in the 3D reconstruction domain), consisting of the application of an aperture, followed by the resampling of data (which introduces noise aliasing). Several conditions were examined to demonstrate the validity of the model and to describe the effect on the image quality of some common reconstruction and visualization techniques. It was found that when downsampling data for increased reconstruction speed, binning in 2D results in a superior low-frequency NEQ, while binning in 3D results in a superior high-frequency NEQ. Furthermore, visualization procedures such as slice averaging were found not to degrade the NEQ provided the sampling interval is unchanged. Finally methods for reducing noise aliasing by oversampling are examined, and a method to eliminate noise aliasing without increasing reconstruction time is proposed. These results demonstrate the ease with which the NEQ of CBCT can be modified and thus optimized for specific tasks and show how such analysis can be used to improve image quality

    Cascaded systems analysis of the 3D noise transfer characteristics of flat-panel cone-beam CT

    No full text
    The physical factors that govern 2D and 3D imaging performance may be understood from quantitative analysis of the spatial-frequency-dependent signal and noise transfer characteristics [e.g., modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ)] along with a task-based assessment of performance (e.g., detectability index). This paper advances a theoretical framework based on cascaded systems analysis for calculation of such metrics in cone-beam CT (CBCT). The model considers the 2D projection NPS propagated through a series of reconstruction stages to yield the 3D NPS and allows quantitative investigation of tradeoffs in image quality associated with acquisition and reconstruction techniques. While the mathematical process of 3D image reconstruction is deterministic, it is shown that the process is irreversible, the associated reconstruction parameters significantly affect the 3D DQE and NEQ, and system optimization should consider the full 3D imaging chain. Factors considered in the cascade include: system geometry; number of projection views; logarithmic scaling; ramp, apodization, and interpolation filters; 3D back-projection; and 3D sampling (noise aliasing). The model is validated in comparison to experiment across a broad range of dose, reconstruction filters, and voxel sizes, and the effects of 3D noise correlation on detectability are explored. The work presents a model for the 3D NPS, DQE, and NEQ of CBCT that reduces to conventional descriptions of axial CT as a special case and provides a fairly general framework that can be applied to the design and optimization of CBCT systems for various applications
    corecore