75 research outputs found

    Systemic inflammatory response predicts outcome in patients undergoing resection for ductal adenocarcinoma head of pancreas

    Get PDF
    The aim of the present study was to examine the relationship between the clinicopathological status, the pre- and postoperative systemic inflammatory response and survival in patients undergoing potentially curative resection for ductal adenocarcinoma of the head of the pancreas. Patients (n=65) who underwent resection of ductal adenocarcinoma of the head of pancreas between 1993 and 2001, and had pre- and postoperative measurements of C-reactive protein, were included in the study. The majority of patients had stage III disease (International Union Against Cancer Criteria, IUCC), positive circumferential margin involvement (R1), tumour size greater than 25 mm with perineural and lymph node invasion and died within the follow-up period. On multivariate analysis, tumour size (hazard ratio (HR) 2.10, 95% confidence interval (CI) 1.20–3.68, P=0.009), vascular invasion (HR 2.58, 95% CI 1.48–4.50, P<0.001) and postoperative C-reactive protein (HR 2.00, 95% CI 1.14–3.52, P=0.015) retained independent significance. Those patients with a postoperative C-reactive protein ⩽10 mg l−1 had a median survival of 21.5 months compared with 8.4 months in those patients with a C-reactive protein >10 mg l−1 (P<0.001). The results of the present study indicate that, in patients who have undergone potentially curative resection for ductal adenocarcinoma of the head of pancreas, the presence of a systemic inflammatory response predicts poor outcome

    Modelling prognostic factors in advanced pancreatic cancer

    Get PDF
    Pancreatic cancer is the fifth most common cause of cancer death. Identification of defined patient groups based on a prognostic index may improve the prediction of survival and selection of therapy. Many prognostic factors have been identified often based on retrospective, underpowered studies with unclear analyses. Data from 653 patients were analysed. Continuous variables are often simplified assuming a linear relationship with log hazard or introducing a step function (dichotomising). Misspecification may lead to inappropriate conclusions but has not been previously investigated in pancreatic cancer studies. Models based on standard assumptions were compared with a novel approach using nonlinear fractional polynomial (FP) transformations. The model based on FP-transformed covariates was most appropriate and confirmed five previously reported prognostic factors: albumin, CA19-9, alkaline phosphatase, LDH and metastases, and identified three additional factors not previously reported: WBC, AST and BUN. The effects of CA19-9, alkaline phosphatase, AST and BUN may go unrecognised due to simplistic assumptions made in statistical modelling. We advocate a multivariable approach that uses information contained within continuous variables appropriately. The functional form of the relationship between continuous covariates and survival should always be assessed. Our model should aid individual patient risk stratification and the design and analysis of future trials in pancreatic cancer

    Diffuse idiopathic skeletal hyperostosis (DISH): relation to vertebral fractures and bone density

    Get PDF
    UnlabelledRadiographs and spinal bone mineral density (BMD) were evaluated from 342 elderly men regarding possible effects of diffuse idiopathic skeletal hyperostosis (DISH) on vertebral fractures and densitometry measurements. Prevalent vertebral fractures were more frequent among men with DISH compared to men with no DISH even after fracture prevalence was adjusted for BMD. Paravertebral calcifications should be considered in patients with DISH when interpreting BMD measurements because both dual X-ray absorptiometry (DXA) and quantitative CT (QCT) densitometry may not be reliable.IntroductionThe purpose of this study is to evaluate the prevalence of DISH in older men and its association with vertebral fractures and with BMD determined by DXA and QCT.MethodsLateral radiographs of the spine were analyzed in a sample of 342 men aged ≥ 65 years participating in the MrOS Study concerning the presence and grade of DISH and vertebral fractures. Lumbar BMD was measured by both DXA (areal, grams per square centimeter) and QCT (volumetric, grams per cubic centimeter). The association between DISH, BMD, and presence of fractures was studied using χ ( 2 ) and t tests.ResultsDISH was present in 52% (178/342) of the men. Men with DISH were older (mean, 75.1 vs 73.3, p &lt; 0.05) and more likely to have prevalent fractures (28% vs 20%, p &lt; p = 0.09). BMD assessed with DXA (1.08 vs 1.00 g/cm(2), p ≤ 0.0001), but not with QCT (0.11 vs 0.11 g/cm3, p = 0.65), was significantly higher in men with DISH compared to men without DISH. Significantly lower BMD of men with both DISH and fractures compared to men with DISH but without fractures was only detected by QCT (-25%, 0.09 vs 0.12, p &lt; 0.05). Both DXA BMD and QCT BMD were significantly higher in severe lumbar DISH (+22% and +31%, p &lt; 0.0001), respectively.ConclusionDISH was associated with a higher prevalence of vertebral fractures in elderly men. Lumbar ossifications related to DISH should be considered when interpreting BMD measurements to predict their fracture risk

    Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families.</p> <p>Results</p> <p>In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll <it>a/b</it>-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping.</p> <p>Conclusions</p> <p>The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants, red algae, glaucophytes and in diatoms with complex plastids, could represent an important and previously missing link in the evolution of the extended LHC protein superfamily.</p

    Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thrifty gene hypothesis posits that, in populations that experienced periods of feast and famine, natural selection favoured individuals carrying thrifty alleles that promote the storage of fat and energy. Polynesians likely experienced long periods of cold stress and starvation during their settlement of the Pacific and today have high rates of obesity and type 2 diabetes (T2DM), possibly due to past positive selection for thrifty alleles. Alternatively, T2DM risk alleles may simply have drifted to high frequency in Polynesians. To identify thrifty alleles in Polynesians, we previously examined evidence of positive selection on T2DM-associated SNPs and identified a T2DM risk allele at unusually high frequency in Polynesians. We suggested that the risk allele of the Gly482Ser variant in the <it>PPARGC1A </it>gene was driven to high frequency in Polynesians by positive selection and therefore possibly represented a thrifty allele in the Pacific.</p> <p>Methods</p> <p>Here we examine whether <it>PPARGC1A </it>is a thrifty gene in Pacific populations by testing for an association between Gly482Ser genotypes and BMI in two Pacific populations (Maori and Tongans) and by evaluating the frequency of the risk allele of the Gly482Ser variant in a sample of worldwide populations.</p> <p>Results</p> <p>We find that the Gly482Ser variant is associated with BMI in Tongans but not in Maori. In a sample of 58 populations worldwide, we also show that the 482Ser risk allele reaches its highest frequency in the Pacific.</p> <p>Conclusion</p> <p>The association between Gly482Ser genotypes and BMI in Tongans together with the worldwide frequency distribution of the Gly482Ser risk allele suggests that <it>PPARGC1A </it>remains a candidate thrifty gene in Pacific populations.</p

    Introducing evolutionary biologists to the analysis of big data: guidelines to organize extended bioinformatics training courses

    Get PDF
    Research in evolutionary biology has been progressively influenced by big data such as massive genome and transcriptome sequencing data, scalar measurements of several phenotypes on tens to thousands of individuals, as well as from collecting worldwide environmental data at an increasingly detailed scale. The handling and analysis of such data require computational skills that usually exceed the abilities of most traditionally trained evolutionary biologists. Here we discuss the advantages, challenges and considerations for organizing and running bioinformatics training courses of 2–3 weeks in length to introduce evolutionary biologists to the computational analysis of big data. Extended courses have the advantage of offering trainees the opportunity to learn a more comprehensive set of complementary topics and skills and allowing for more time to practice newly acquired competences. Many organizational aspects are common to any course, as the need to define precise learning objectives and the selection of appropriate and highly motivated instructors and trainees, among others. However, other features assume particular importance in extended bioinformatics training courses. To successfully implement a learning-by-doing philosophy, sufficient and enthusiastic teaching assistants (TAs) are necessary to offer prompt help to trainees. Further, a good balance between theoretical background and practice time needs to be provided and assured that the schedule includes enough flexibility for extra review sessions or further discussions if desired. A final project enables trainees to apply their newly learned skills to real data or case studies of their interest. To promote a friendly atmosphere throughout the course and to build a close-knit community after the course, allow time for some scientific discussions and social activities. In addition, to not exhaust trainees and TAs, some leisure time needs to be organized. Finally, all organization should be done while keeping the budget within fair limits. In order to create a sustainable course that constantly improves and adapts to the trainees’ needs, gathering short- and long-term feedback after the end of the course is important. Based on our experience we have collected a set of recommendations to effectively organize and run extended bioinformatics training courses for evolutionary biologists, which we here want to share with the community. They offer a complementary way for the practical teaching of modern evolutionary biology and reaching out to the biological community.Peer reviewe

    Effects of Background Field-of-View and Depth-Plane on the Oculogyral Illusion

    No full text
    This study examined the effects of background field-of-view and depth-plane on the oculogyral illusion. Seven subjects viewed a stationary fixation stimulus during the postrotatory interval following a 45-sec. constant-velocity chair rotation. The duration of the illusory movement of the fixation stimulus during the postrotatory interval was measured, along with the duration of the illusion of whole-body rotation (known as the somatogyral illusion) and the duration of the subject's slow-phase vestibular nystagmus. Subjects viewed the fixation stimulus by itself in a No-background condition or when surrounded by six background fields formed by the combination of two fields-of-view (35° and 115°) and three depth-planes (near, coplanar, and far). The different background fields inhibited the oculogyral illusion relative to the No-background condition but did not differ statistically from each other. The somatogyral durations better matched the oculogyral ones than did nystagmus decay, especially when a background field was present. These results suggest that the oculogyral illusion is more related to the experience of whole-body rotation than to oculomotor mechanisms and that the inhibitory effect of a background scene is only modestly affected by its field-of-view and depth-plane

    Atrial function during volume loading.

    No full text
    corecore