143 research outputs found

    Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis

    Get PDF
    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in allWBDsamples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent ofWBDvia tests of Henle–Koch’s postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study

    Use of fractal dimensions to quantify coral shape

    Get PDF
    A morphometrical method to quantify and characterize coral corallites using Richardson Plots and Kaye's notion of fractal dimensions is presented. A Jurassic coral species (Aplosmilia spinosa) and five Recent coral species were compared using the Box-Counting Method. This method enables the characterization of their morphologies at calicular and septal levels by their fractal dimensions (structural and textural). Moreover, it is possible to determine differences between species of Montastraea and to tackle the high phenotypic plasticity of Montastraea annularis. The use of fractal dimensions versus conventional methods (e.g., measurements of linear dimensions with a calliper, landmarks, Fourier analyses) to explore a rugged boundary object is discussed. It appears that fractal methods have the potential to considerably simplify the morphometrical and statistical approaches, and be a valuable addition to methods based on Euclidian geometr

    Roles for retrotransposon insertions in human disease

    Get PDF

    Calm-water reefs and rough-water reefs of the Caribbean Pleistocene

    No full text
    Examination of a number of late Pleistocene Caribbean shallow-water reefs revealed a pattern of wave-induced reef zonation analogous to that known from the Recent. Comparison of the zonal sequences of the Recent reefs with their fossil counterparts provides 8 key for the interpretation of paleo-hydrodynamic conditions, i.e. direction and degree of wave exposure during growth of the Pleistocene reefs. The spectrum of Pleistocene wave exposure recorded ranged from prevailing heavy surf generated by oceanic swell to no significant wave turbulence. The regional variation of reef types in the Caribbean area during late Pleistocene high sea level stands corresponds to the Recent pattern thus giving evidence for a basically similar distribution of wave energy (and consequently of wind force and directions) as can be observed today

    Use of fractal dimensions to quantify coral shape

    Get PDF
    A morphometrical method to quantify and characterize coral corallites using Richardson Plots and Kaye’s notion of fractal dimensions is presented. A Jurassic coral species (Aplosmilia spinosa) and five Recent coral species were compared using the Box-Counting Method. This method enables the characterization of their morphologies at calicular and septal levels by their fractal dimensions (structural and textural). Moreover, it is possible to determine differences between species of Montastraea and to tackle the high phenotypic plasticity of Montastraea annularis. The use of fractal dimensions versus conventional methods (e.g., measurements of linear dimensions with a calliper, landmarks, Fourier analyses) to explore a rugged boundary object is discussed. It appears that fractal methods have the potential to considerably simplify the morphometrical and statistical approaches, and be a valuable addition to methods based on Euclidian geometry

    A cathodoluminescence microscope for low intensity luminescence

    No full text
    • 

    corecore