1,259 research outputs found

    What do we evaluate in sport mindfulness interventions? A systematic review of commonly used questionnaires

    Get PDF
    Interest of the study: mindfulness is a concept describing the focus on the present moment, intentionally and without judgement. This approach has only recently been applied to sport psychology. Objectives: the aim of the current review is to investigate which indicators and questionnaires are used in mindfulness research in sport, being specifically interested in mindfulness assessment. Methods: PRISMA guidelines for systematic reviews and the recommendations of the Cochrane Collaboration were used. Literature searches were conducted in Psychinfo, PubMed, EMBASE and the Cochrane Library. Results: From 2, 203 records initially retrieved, 17 articles were included. The results show that mindfulness, anxiety and acceptance are the most commonly studied psychological indicators. The Five Facet Mindfulness Questionnaire is the most frequently used mindfulness scale. We also discuss the possibility of using physiological indicators as complementary assessment. Conclusions: It is recommended to specifically adapt some questionnaires, such is already done with the Sport Anxiety Scale or the Mindfulness Inventory for Sport, for their use in sport psychology

    Optimum quantum dot size for highly efficient fluorescence bioimaging

    Get PDF
    Semiconductor quantum dots of few nanometers have demonstrated a great potential for bioimaging. The size determines the emitted color, but it is also expected to play an important role in the image brightness. In this work, the size dependence of the fluorescence quantum yield of the highly thermal sensitive CdTe quantum dots has been systematically investigated by thermal lens spectroscopy. It has been found that an optimum quantum yield is reached for 3.8-nm quantum dots. The presence of this optimum size has been corroborated in both one-photon excited fluorescence experiments and two-photon fluorescence microscopy of dot-incubated cancer cells. Combination of quantum yield and fluorescence decay time measurements supports that the existence of this optimum size emerges from the interplay between the frequency-dependent radiative emission rate and the size-dependent coupling strength between bulk excitons and surface trapping states

    Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production

    Get PDF
    Brain imaging methods have contributed to shed light on the mechanisms of recovery after early brain insult. The assumption that the unaffected right hemisphere can take over language functions after left perinatal stroke is still under debate. Here, we report how patterns of brain structural and functional reorganization were associated with language outcomes in a group of 4-year-old children with left perinatal arterial ischemic stroke. Specifically, we gathered specific fine-grained developmental measures of receptive and productive aspects of language as well as standardized measures of cognitive development. We also collected structural neuroimaging data as well as functional activations during a passive listening story-telling fMRI task and a resting state session (rs-fMRI). Children with a left perinatal stroke showed larger lateralization indices of both structural and functional connectivity of the dorsal language pathway towards the right hemisphere that, in turn, were associated with better language outcomes. Importantly, the pattern of structural asymmetry was significantly more right-lateralized in children with a left perinatal brain insult than in a group of matched healthy controls. These results strongly suggest that early lesions of the left dorsal pathway and the associated perisylvian regions can induce the inter-hemispheric transfer of language functions to right homolog regions. This study provides combined evidence of structural and functional brain reorganization of language networks after early stroke with strong implications for neurobiological models of language development

    Study of a Nonlocal Density scheme for electronic--structure calculations

    Full text link
    An exchange-correlation energy functional beyond the local density approximation, based on the exchange-correlation kernel of the homogeneous electron gas and originally introduced by Kohn and Sham, is considered for electronic structure calculations of semiconductors and atoms. Calculations are carried out for diamond, silicon, silicon carbide and gallium arsenide. The lattice constants and gaps show a small improvement with respect to the LDA results. However, the corresponding corrections to the total energy of the isolated atoms are not large enough to yield a substantial improvement for the cohesive energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure

    Heat in optical tweezers

    Get PDF
    Laser-induced thermal effects in optically trapped microspheres and single cells have been investigated by Luminescence Thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of microns, in agreement with previous theoretical models. Solvent absorption has been identified as the key parameter to determine laser-induced heating, which can be reduced by establishing a continuous fluid flow of the sample. Our experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This has been corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. Minimum intracellular heating, well below the cytotoxic level (43 °C), has been demonstrated to occur for optical trapping with 820 nm laser radiation, thus avoiding cell damage

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
    • 

    corecore