332 research outputs found

    Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines. (II): Post-LBV Wolf-Rayet stars

    Full text link
    Van Marle et al. (2005) showed that circumstellar absorption lines in early Type Ib/c supernova and gamma-ray burst afterglow spectra may reveal the progenitor evolution of the exploding Wolf-Rayet star. While the quoted paper deals with Wolf-Rayet stars which evolved through a red supergiant stage, we investigate here the initially more massive Wolf-Rayet stars which are thought to evolve through a Luminous Blue Variable (LBV) stage. We perform hydrodynamic simulations of the evolution of the circumstellar medium around a 60 Msol star, from the main sequence through the LBV and Wolf-Rayet stages, up to core collapse. We then compute the column density of the circumstellar matter as a function of radial velocity, time and angle. This allows a comparison with the number and blue-shifts, of absorption components in the spectra of LBVs, Wolf-Rayet stars, Type Ib/c supernovae and gamma-ray burst afterglows. Our simulation for the post-LBV stage shows the formation of various absorption components, which are, however, rather short lived; they dissipate on time scales shorter than 50,000yr. As the LBV stage is thought to occur at the beginning of core helium burning, the remaining Wolf-Rayet life time is expected to be one order of magnitude larger. When interpreting the absorption components in the afterglow spectrum of GRB-021004 as circumstellar, it can be concluded that the progenitor of this source did most likely not evolve through an LBV stage. However, a close binary with late common-envelope phase (Case C) may produce a circumstellar medium that closely resembles the LBV to Wolf-Rayet evolution, but with a much shorter Wolf-Rayet period.Comment: accepted for publication by A&

    The origin of blue-shifted absorption lines in a gamma-ray burst afterglow

    Get PDF
    The afterglow spectrum of GRB 021004 shows a system of blueshifted absorption lines, indicating the presence of matter moving towards us at discrete velocities in the range from 0 to more than 2000 km/s. We propose that these lines are the result of absorption by circumstellar matter, which was ejected by gamma-ray burst progenitor (a massive star) during its evolution. We have simulated the evolution of the circumstellar medium around such a star and find that the evolutionary sequence: main-sequence, Red Supergiant, Wolf-Rayet star can qualitatively reproduce the various absorption lines systems

    Vascular disease in HIV/AIDS patients

    Get PDF
    Objectives. An ongoing prospective clinical survey to determine the spectrum of vascular disease in HIV/AIDS patients and the risk factors affecting clinical outcome in order to formulate a management protocol for future use. Methods. Comprehensive screening for risk factors for vascular disease as well as HIV/AIDS-related conditions. Disease pattern and presentation are noted and patients treated accordingly. Vascular emergencies are managed regardless of HIV status because this information is usually not available at the time of presentation. Elective management is based on immune status and risk stratification. Results. 42 patients tested positive for HIV. The majority of patients presented with occlusive disease (57%), followed by anearysms (21%) and vascular trauma (19%). A variety of vascular surgical procedures were performed on 36 patients. There was no surgical mortality and 10 patients developed complications, including 2 amputations and 7 cases of minor wound sepsis. The 3 patients who received preoperative antiretroviral therapy showed a marked reduction in viral count and a significant improvement in CD4 T-cell count. Conclusion. Surgery can be safe and effective in HIV-positive patients provided the necessary precautions are taken to reduce surgical morbidity. (South African Medical Journal: 2002 92(12): 974-977

    Forming a constant density medium close to long gamma-ray bursts

    Get PDF
    The progenitor stars of long Gamma-Ray Bursts (GRBs) are thought to be Wolf-Rayet stars, which generate a massive and energetic wind. Nevertheless, about 25 percent of all GRB afterglows light curves indicate a constant density medium close to the exploding star. We explore various ways to produce this, by creating situations where the wind termination shock arrives very close to the star, as the shocked wind material has a nearly constant density. Typically, the distance between a Wolf-Rayet star and the wind termination shock is too large to allow afterglow formation in the shocked wind material. Here, we investigate possible causes allowing for a smaller distance: A high density or a high pressure in the surrounding interstellar medium (ISM), a weak Wolf-Rayet star wind, the presence of a binary companion, and fast motion of the Wolf-Rayet star relative to the ISM. We find that all four scenarios are possible in a limited parameter space, but that none of them is by itself likely to explain the large fraction of constant density afterglows. A low GRB progenitor metallicity, and a high GRB energy make the occurrence of a GRB afterglow in a constant density medium more likely. This may be consistent with constant densities beingpreferentially found for energetic, high redshift GRBs.Comment: 13 pages, 13 figures, new version: as accepted by Astronomy & Astrophysic

    The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure

    Get PDF
    Context. The interaction between stellar winds and the interstellar medium (ISM) can create complex bow shocks. The photometers on board the Herschel Space Observatory are ideally suited to studying the morphologies of these bow shocks. Aims. We aim to study the circumstellar environment and wind-ISM interaction of the nearest red supergiant, Betelgeuse. Methods. Herschel PACS images at 70, 100, and 160 micron and SPIRE images at 250, 350, and 500 micron were obtained by scanning the region around Betelgeuse. These data were complemented with ultraviolet GALEX data, near-infrared WISE data, and radio 21 cm GALFA-HI data. The observational properties of the bow shock structure were deduced from the data and compared with hydrodynamical simulations. Results. The infrared Herschel images of the environment around Betelgeuse are spectacular, showing the occurrence of multiple arcs at 6-7 arcmin from the central target and the presence of a linear bar at 9 arcmin. Remarkably, no large-scale instabilities are seen in the outer arcs and linear bar. The dust temperature in the outer arcs varies between 40 and 140 K, with the linear bar having the same colour temperature as the arcs. The inner envelope shows clear evidence of a non-homogeneous clumpy structure (beyond 15 arcsec), probably related to the giant convection cells of the outer atmosphere. The non-homogeneous distribution of the material even persists until the collision with the ISM. A strong variation in brightness of the inner clumps at a radius of 2 arcmin suggests a drastic change in mean gas and dust density some 32 000 yr ago. Using hydrodynamical simulations, we try to explain the observed morphology of the bow shock around Betelgeuse. Conclusions: [abbreviated]Comment: 26 page

    First Stars. II. Evolution with mass loss

    Full text link
    The first stars are assumed to be predominantly massive. Although, due to the low initial abundances of heavy elements the line-driven stellar winds are supposed to be inefficient in the first stars, these stars may loose a significant amount of their initial mass by other mechanisms. In this work, we study the evolution with a prescribed mass loss rate of very massive, galactic and pregalactic, Population III stars, with initial metallicities Z=10−6Z=10^{-6} and Z=10−9Z=10^{-9}, respectively, and initial masses 100, 120, 150, 200, and 250 M⊙\,M_{\odot} during the hydrogen and helium burning phases. The evolution of these stars depends on their initial mass, metallicity and the mass loss rate. Low metallicity stars are hotter, compact and luminous, and they are shifted to the blue upper part in the Hertzprung-Russell diagram. With mass loss these stars provide an efficient mixing of nucleosynthetic products, and depending on the He-core mass their final fate could be either pair-instability supernovae or energetic hypernovae. These stars contributed to the reionization of the universe and its enrichment with heavy elements, which influences the subsequent star formation properties.Comment: Accepted for publication in Astrophysics & Space Science. 15 pages, 18 figure
    • 

    corecore