research

Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines. (II): Post-LBV Wolf-Rayet stars

Abstract

Van Marle et al. (2005) showed that circumstellar absorption lines in early Type Ib/c supernova and gamma-ray burst afterglow spectra may reveal the progenitor evolution of the exploding Wolf-Rayet star. While the quoted paper deals with Wolf-Rayet stars which evolved through a red supergiant stage, we investigate here the initially more massive Wolf-Rayet stars which are thought to evolve through a Luminous Blue Variable (LBV) stage. We perform hydrodynamic simulations of the evolution of the circumstellar medium around a 60 Msol star, from the main sequence through the LBV and Wolf-Rayet stages, up to core collapse. We then compute the column density of the circumstellar matter as a function of radial velocity, time and angle. This allows a comparison with the number and blue-shifts, of absorption components in the spectra of LBVs, Wolf-Rayet stars, Type Ib/c supernovae and gamma-ray burst afterglows. Our simulation for the post-LBV stage shows the formation of various absorption components, which are, however, rather short lived; they dissipate on time scales shorter than 50,000yr. As the LBV stage is thought to occur at the beginning of core helium burning, the remaining Wolf-Rayet life time is expected to be one order of magnitude larger. When interpreting the absorption components in the afterglow spectrum of GRB-021004 as circumstellar, it can be concluded that the progenitor of this source did most likely not evolve through an LBV stage. However, a close binary with late common-envelope phase (Case C) may produce a circumstellar medium that closely resembles the LBV to Wolf-Rayet evolution, but with a much shorter Wolf-Rayet period.Comment: accepted for publication by A&

    Similar works

    Full text

    thumbnail-image