566 research outputs found

    Crystallization and preliminary crystallographic data of the PAS domain of the NifL protein from Azotobacter vinelandii.

    Get PDF
    The Azotobacter vinelandii NifL protein is a redox-sensing flavoprotein which inhibits the activity of the nitrogen-specific transcriptional activator NifA. The N-terminal PAS domain has been overexpressed in Escherichia coli and crystallized by the hanging-drop vapour-diffusion method. The crystal belongs to the rhombohedral space group R32, with unit-cell parameters a = b = 65.0, c = 157.3 Å, and has one molecule in the asymmetric unit. Native data were collected to 3.0 Å on the BW7B synchrotron beamline at the EMBL Hamburg Outstation

    Estudio biométrico de las especies del género Homalia (Neckeraceae, Musci) presentes en la Península Ibérica e Islas Canarias.

    Get PDF
    CUBERO J. I., MARCOS-SAMANIEGO N. & ENROTH J. 2001. Estudio biométrico de las especies del género Homalia (Neckeraceae, Musci) presentes en la Península Ibérica e Islas Canarias. Bot. Complutensis 25: 213-219. El género Homalia Brid. está representado en la Península Ibérica e Islas Canarias por 3 especies: H. trichomanoides, H. lusitanica y H. webbiana. Tradicionalmente su determinación se ha basado en la dentición del filidio y la longitud del nervio. En este trabajo se ha realizado un estudio biométrico de los filidios de estas especies para cuantificar sus diferencias. Se ha comprobado que la dentición del filidio es el mejor caracter para su determinación.CUBERO J. I., MARCOS-SAMANIEGO N. & ENROTH J. 2001. Biometric study on the Homalia species (Neckeraceae, Musci) occuring in the Iberian Peninsula and the Canary Islands. Bot. Complutensis 25: 213-219. There are three species of Homalia Brid. in the Iberian Peninsula and Canary Islands: H. trichomanoides, H. lusitanica and H. webbiana. Previous studies on these species have emphasized the leaf dentation and the length of the costa. For this project we carried out a biometric study of the leaves in order to pinpoint their differences. Leaf dentation is the most useful character to separate the species

    Manual of tropical bryology

    Get PDF
    Bryophytes belong to the oldest land plants. They existed already in the Palaeozoic 300 mio years ago in forms which were hardly different from the extant species. They remained relatively unchanged with relatively low evolution rates (and are thus often called a „conservative“ plant group), but could successfully establish themselves in an always varying environment from Devonian swamps to Permian forests, Mesozoic deserts and as epiphytes in Tertiary rainforests. They are not eaten by snails or insects, and are resistant against fungi and bacteria

    Evolution of the Neckeraceae (Bryophyta): resolving the backbone phylogeny

    Get PDF
    Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Peer reviewe

    Characterization of three new condensation particle counters for sub-3 nm particle detection during the Helsinki CPC workshop : the ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010

    Get PDF
    In this study we characterized the performance of three new particle counters able to detect particles smaller than 3 nm during the Helsinki condensation particle counter (CPC) workshop in summer 2016: the Aerosol Dynamics Inc. (ADI; Berkeley, USA) versatile water condensation particle counter (vWCPC), TSI 3777 nano enhancer (TSI Inc., Shoreview, USA) and modified and boosted TSI 3010-type CPC from Universite Blaise Pascal called a B3010. The performance of all CPCs was first measured with charged tungsten oxide test particles at temperature settings which resulted in supersaturation low enough to not detect any ions produced by a radioactive source. Due to similar measured detection efficiencies, additional comparison between the 3777 and vWCPC were conducted using electrically neutral tungsten oxide test particles and with positively charged tetradodecylammonium bromide. Furthermore, the detection efficiencies of the 3777 and vWCPC were measured with boosted temperature settings yielding supersaturation which was at the onset of homogeneous nucleation for the 3777 or confined within the range of liquid water for the ADI vWCPC. Finally, CPC-specific tests were conducted to probe the response of the 3777 to various inlet flow relative humidities, of the B3010 to various inlet flow rates and of the vWCPC to various particle concentrations. For the 3777 and vWCPC the measured 50% detection diameters (d50s) were in the range of 1.3-2.4 nm for the tungsten oxide particles, depending on the particle charging state and CPC temperature settings, between 2.5 and 3.3 nm for the organic test aerosol, and in the range of 3.2-3.4 nm for tungsten oxide for the B3010.Peer reviewe

    Ganglion Cell Adaptability: Does the Coupling of Horizontal Cells Play a Role?

    Get PDF
    Background: The visual system can adjust itself to different visual environments. One of the most well known examples of this is the shift in spatial tuning that occurs in retinal ganglion cells with the change from night to day vision. This shift is thought to be produced by a change in the ganglion cell receptive field surround, mediated by a decrease in the coupling of horizontal cells. Methodology/Principal Findings: To test this hypothesis, we used a transgenic mouse line, a connexin57-deficient line, in which horizontal cell coupling was abolished. Measurements, both at the ganglion cell level and the level of behavioral performance, showed no differences between wild-type retinas and retinas with decoupled horizontal cells from connexin57-deficient mice. Conclusion/Significance: This analysis showed that the coupling and uncoupling of horizontal cells does not play a dominant role in spatial tuning and its adjustability to night and day light conditions. Instead, our data suggest that anothe

    Vertical profiles of sub-3nm particles over the boreal forest

    Get PDF
    This work presents airborne observations of sub-3 nm particles in the lower troposphere and investigates new particle formation (NPF) within an evolving boundary layer (BL). We studied particle concentrations together with supporting gas and meteorological data inside the planetary BL over a boreal forest site in Hyytiala, southern Finland. The analysed data were collected during three flight measurement campaigns: May-June 2015, August 2015 and April-May 2017, including 27 morning and 26 afternoon vertical profiles. As a platform for the instrumentation, we used a Cessna 172 aircraft. The analysed flight data were collected horizontally within a 30 km distance from SMEAR II in Hyytiala and vertically from 100 m above ground level up to 2700 m. The number concentration of 1.5-3 nm particles was observed to be, on average, the highest near the forest canopy top and to decrease with increasing altitude during the mornings of NPF event days. This indicates that the precursor vapours emitted by the forest play a key role in NPF in Hyytiala. During daytime, newly formed particles were observed to grow in size and the particle population became more homogenous within the well-mixed BL in the afternoon. During undefined days with respect to NPF, we also detected an increase in concentration of 1.5-3 nm particles in the morning but not their growth in size, which indicates an interrupted NPF process during these undefined days. Vertical mixing was typically stronger during the NPF event days than during the undefined or non-event days. The results shed light on the connection between boundary layer dynamics and NPF.Peer reviewe
    corecore