862 research outputs found

    The changing international network of sovereign debt and financial institutions

    Get PDF
    We develop a theoretical and empirical framework for the connections between global financial and sovereign CDS markets. The transmission of shocks is shown to affect the systemic default probability of the international network. The network is found to be "robust but fragile", meaning that a shock can result in the propagation of crises. Between 2003 and 2013, the probability of default in the network in the face of potentially poor investment outcomes and/or sovereign bond haircuts changes sub-stantially. The results suggest that it is the interconnectedness of the financial and sovereign debt markets that provides increased protection against financial fragility

    On the correspondence between data revision and trend-cycle decomposition

    Get PDF
    This paper places the data revision model of Jacobs and van Norden (2011) within a class of trend-cycle decompositions relating directly to the Beveridge-Nelson decomposition. In both these approaches identifying restrictions on the covariance matrix under simple and realistic conditions may produce a smoothed estimate of the underlying series which is more volatile than the observed series

    Kinetic Vlasov Simulations of collisionless magnetic Reconnection

    Full text link
    A fully kinetic Vlasov simulation of the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions fkf_k (k=i,ek=i,e) are discretised on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a more detailed investigation of the distribution functions. The role of the different contributions of Ohm's law are compared by calculating each of the terms from the moments of the fkf_k. The important role of the off--diagonal elements of the electron pressure tensor could be confirmed. The inductive electric field at the X--Line is found to be dominated by the non--gyrotropic electron pressure, while the bulk electron inertia is of minor importance. Detailed analysis of the electron distribution function within the diffusion region reveals the kinetic origin of the non--gyrotropic terms

    The interaction between transpolar arcs and cusp spots

    Get PDF
    Transpolar arcs and cusp spots are both auroral phenomena which occur when the interplanetary magnetic field is northward. Transpolar arcs are associated with magnetic reconnection in the magnetotail, which closes magnetic flux and results in a "wedge" of closed flux which remains trapped, embedded in the magnetotail lobe. The cusp spot is an indicator of lobe reconnection at the high-latitude magnetopause; in its simplest case, lobe reconnection redistributes open flux without resulting in any net change in the open flux content of the magnetosphere. We present observations of the two phenomena interacting--i.e., a transpolar arc intersecting a cusp spot during part of its lifetime. The significance of this observation is that lobe reconnection can have the effect of opening closed magnetotail flux. We argue that such events should not be rare

    Toward detailed prominence seismology - I. Computing accurate 2.5D magnetohydrodynamic equilibria

    Full text link
    Context. Prominence seismology exploits our knowledge of the linear eigenoscillations for representative magnetohydro- dynamic models of filaments. To date, highly idealized models for prominences have been used, especially with respect to the overall magnetic configurations. Aims. We initiate a more systematic survey of filament wave modes, where we consider full multi-dimensional models with twisted magnetic fields representative of the surrounding magnetic flux rope. This requires the ability to compute accurate 2.5 dimensional magnetohydrodynamic equilibria that balance Lorentz forces, gravity, and pressure gradients, while containing density enhancements (static or in motion). Methods. The governing extended Grad-Shafranov equation is discussed, along with an analytic prediction for circular flux ropes for the Shafranov shift of the central magnetic axis due to gravity. Numerical equilibria are computed with a finite element-based code, demonstrating fourth order accuracy on an explicitly known, non-trivial test case. Results. The code is then used to construct more realistic prominence equilibria, for all three possible choices of a free flux-function. We quantify the influence of gravity, and generate cool condensations in hot cavities, as well as multi- layered prominences. Conclusions. The internal flux rope equilibria computed here have the prerequisite numerical accuracy to allow a yet more advanced analysis of the complete spectrum of linear magnetohydrodynamic perturbations, as will be demonstrated in the companion paper.Comment: Accepted by Astronomy & Astrophysics, 15 pages, 15 figure

    Forecasting output gaps in the G‐7 countries: The role of correlated Innovations and structural breaks.

    Get PDF
    Trend GDP and output gaps play an important role in fiscal and monetary policy formulation, often including the need for forecasts. In this paper we focus on fore- casting trend GDP and output gaps with Beveridge-Nelson (1981) trend-cycle decompositions and investigate how these are affected by assumptions concern- ing correlated innovations and structural breaks. We evaluate expanding win- dows, one-step-ahead forecasts indirectly for the G-7 countries on the basis of real GDP growth rate forecasts. We find that correlated innovations affect real GDP growth rate forecasts positively, while allowing for structural breaks works for some countries but not for all. In the face of uncertainty the evidence supports that in making forecasts of trends and output gap policy makers should focus on allowing for the correlation of shocks as an order of priority higher than unknown structural breaks

    Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. II. 2D magnetic X-points

    Full text link
    We provide a valid magnetohydrostatic equilibrium from the collapse of a 2D X-point in the presence of a finite plasma pressure, in which the current density is not simply concentrated in an infinitesimally thin, one-dimensional current sheet, as found in force-free solutions. In particular, we wish to determine if a finite pressure current sheet will still involve a singular current, and if so, what is the nature of the singularity. We use a full MHD code, with the resistivity set to zero, so that reconnection is not allowed, to run a series of experiments in which an X-point is perturbed and then is allowed to relax towards an equilibrium, via real, viscous damping forces. Changes to the magnitude of the perturbation and the initial plasma pressure are investigated systematically. The final state found in our experiments is a "quasi-static" equilibrium where the viscous relaxation has completely ended, but the peak current density at the null increases very slowly following an asymptotic regime towards an infinite time singularity. Using a high grid resolution allows us to resolve the current structures in this state both in width and length. In comparison with the well known pressureless studies, the system does not evolve towards a thin current sheet, but concentrates the current at the null and the separatrices. The growth rate of the singularity is found to be tD, with 0 < D < 1. This rate depends directly on the initial plasma pressure, and decreases as the pressure is increased. At the end of our study, we present an analytical description of the system in a quasi-static non-singular equilibrium at a given time, in which a finite thick current layer has formed at the null

    In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail

    Get PDF
    Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earth's magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.Comment: 14 pages, 4 figure
    corecore