Context. Prominence seismology exploits our knowledge of the linear
eigenoscillations for representative magnetohydro- dynamic models of filaments.
To date, highly idealized models for prominences have been used, especially
with respect to the overall magnetic configurations.
Aims. We initiate a more systematic survey of filament wave modes, where we
consider full multi-dimensional models with twisted magnetic fields
representative of the surrounding magnetic flux rope. This requires the ability
to compute accurate 2.5 dimensional magnetohydrodynamic equilibria that balance
Lorentz forces, gravity, and pressure gradients, while containing density
enhancements (static or in motion).
Methods. The governing extended Grad-Shafranov equation is discussed, along
with an analytic prediction for circular flux ropes for the Shafranov shift of
the central magnetic axis due to gravity. Numerical equilibria are computed
with a finite element-based code, demonstrating fourth order accuracy on an
explicitly known, non-trivial test case.
Results. The code is then used to construct more realistic prominence
equilibria, for all three possible choices of a free flux-function. We quantify
the influence of gravity, and generate cool condensations in hot cavities, as
well as multi- layered prominences.
Conclusions. The internal flux rope equilibria computed here have the
prerequisite numerical accuracy to allow a yet more advanced analysis of the
complete spectrum of linear magnetohydrodynamic perturbations, as will be
demonstrated in the companion paper.Comment: Accepted by Astronomy & Astrophysics, 15 pages, 15 figure