82 research outputs found

    Designing difficult office space allocation problem instances with mathematical programming

    Get PDF
    Office space allocation (OSA) refers to the assignment of room space to a set of entities (people, machines, roles, etc.), with the goal of optimising the space utilisation while satisfying a set of additional constraints. In this paper, a mathematical programming approach is developed to model and generate test instances for this difficult and important combinatorial optimisation problem. Systematic experimentation is then carried out to study the difficulty of the generated test instances when the parameters for adjusting space misuse (overuse and underuse) and constraint violations are subject to variation. The results show that the difficulty of solving OSA problem instances can be greatly affected by the value of these parameters

    An evolutionary strategy with machine learning for learning to rank in information retrieval

    Get PDF
    Learning to Rank (LTR) is one of the problems in Information Retrieval (IR) that nowadays attracts attention from researchers. The LTR problem refers to ranking the retrieved documents for users in search engines, question answering and product recommendation systems. There is a number of LTR approaches based on machine learning and computational intelligence techniques. Most existing LTR methods have limitations, like being too slow or not being very effective or requiring large computer memory to operate. This paper proposes a LTR method that combines a (1+1)-Evolutionary Strategy with machine learning. Three variants of the method are investigated: ES-Rank, IESR-Rank and IESVMRank. They differ on the mechanism to initialize the chromosome for the evolutionary process. ES-Rank simply sets all genes in the initial chromosome to the same value. IESRRank uses linear regression and IESVM-Rank uses support vector machine for the initialization process. Experimental results from comparing the proposed method to fourteen other approaches from the literature show that IESRRank achieves the overall best performance. Ten problem instances are used here, obtained from four datasets: MSLR-WEB10K, LETOR 3 and LETOR 4. Performance is measured at the top-10 query-document pairs retrieved, using five metrics: Mean Average Precision (MAP), Root Mean Square Error (RMSE), Precision (P@10), Reciprocal Rank (RR@10) and Normalized Discounted Cumulative Gain (NDCG@10). The contribution of this paper is an effective and efficient LTR method combining a listwise evolutionary technique with point-wise and pair-wise machine learning techniques

    Decomposition techniques with mixed integer programming and heuristics for home healthcare planning

    Get PDF
    We tackle home healthcare planning scenarios in the UK using decomposition methods that incorporate mixed integer programming solvers and heuristics. Home healthcare planning is a difficult problem that integrates aspects from scheduling and routing. Solving real-world size instances of these problems still presents a significant challenge to modern exact optimization solvers. Nevertheless, we propose decomposition techniques to harness the power of such solvers while still offering a practical approach to produce high-quality solutions to real-world problem instances. We first decompose the problem into several smaller sub-problems. Next, mixed integer programming and/or heuristics are used to tackle the sub-problems. Finally, the sub-problem solutions are combined into a single valid solution for the whole problem. The different decomposition methods differ in the way in which subproblems are generated and the way in which conflicting assignments are tackled (i.e. avoided or repaired). We present the results obtained by the proposed decomposition methods and compare them to solutions obtained with other methods. In addition, we conduct a study that reveals how the different steps in the proposed method contribute to those results. The main contribution of this paper is a better understanding of effective ways to combine mixed integer programming within effective decomposition methods to solve real-world instances of home healthcare planning problems in practical computation time

    Workforce scheduling and routing problems: literature survey and computational study

    Get PDF
    In the context of workforce scheduling, there are many scenarios in which personnel must carry out tasks at different locations hence requiring some form of transportation. Examples of these type of scenarios include nurses visiting patients at home, technicians carrying out repairs at customers’ locations and security guards performing rounds at different premises, etc. We refer to these scenarios as workforce scheduling and routing problems (WSRP) as they usually involve the scheduling of personnel combined with some form of routing in order to ensure that employees arrive on time at the locations where tasks need to be performed. The first part of this paper presents a survey which attempts to identify the common features of WSRP scenarios and the solution methods applied when tackling these problems. The second part of the paper presents a study on the computational difficulty of solving these type of problems. For this, five data sets are gathered from the literature and some adaptations are made in order to incorporate the key features that our survey identifies as commonly arising in WSRP scenarios. The computational study provides an insight into the structure of the adapted test instances, an insight into the effect that problem features have when solving the instances using mathematical programming, and some benchmark computation times using the Gurobi solver running on a standard personal computer

    A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems

    Get PDF
    This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature

    Particle swarm optimization for the Steiner tree in graph and delay-constrained multicast routing problems

    Get PDF
    This paper presents the first investigation on applying a particle swarm optimization (PSO) algorithm to both the Steiner tree problem and the delay constrained multicast routing problem. Steiner tree problems, being the underlining models of many applications, have received significant research attention within the meta-heuristics community. The literature on the application of meta-heuristics to multicast routing problems is less extensive but includes several promising approaches. Many interesting research issues still remain to be investigated, for example, the inclusion of different constraints, such as delay bounds, when finding multicast trees with minimum cost. In this paper, we develop a novel PSO algorithm based on the jumping PSO (JPSO) algorithm recently developed by Moreno-Perez et al. (Proc. of the 7th Metaheuristics International Conference, 2007), and also propose two novel local search heuristics within our JPSO framework. A path replacement operator has been used in particle moves to improve the positions of the particle with regard to the structure of the tree. We test the performance of our JPSO algorithm, and the effect of the integrated local search heuristics by an extensive set of experiments on multicast routing benchmark problems and Steiner tree problems from the OR library. The experimental results show the superior performance of the proposed JPSO algorithm over a number of other state-of-the-art approaches

    ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization

    Get PDF
    This chapter presents ParadisEO-MOEO, a white-box object-oriented software framework dedicated to the flexible design of metaheuristics for multi-objective optimization. This paradigm-free software proposes a unified view for major evolutionary multi-objective metaheuristics. It embeds some features and techniques for multi-objective resolution and aims to provide a set of classes allowing to ease and speed up the development of computationally efficient programs. It is based on a clear conceptual distinction between the solution methods and the problems they are intended to solve. This separation confers a maximum design and code reuse. This general-purpose framework provides a broad range of fitness assignment strategies, the most common diversity preservation mechanisms, some elitistrelated features as well as statistical tools. Furthermore, a number of state-of-the-art search methods, including NSGA-II, SPEA2 and IBEA, have been implemented in a user-friendly way, based on the fine-grained ParadisEO-MOEO components
    corecore