
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

Non-Linear Great Deluge with Learning Mechanism for Solving
the Course Timetabling Problem

Joe H. Obit∗ Dario Landa-Silva∗ Djamilah Ouelhadj∗ Marc Sevaux†

∗ASAP Research Group, School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

jzh@cs.nott.ac.uk, dario.landasilva@nottingham.ac.uk, dxs@cs.nott.ac.uk

†University of South-Brittany
CNRS, FRE 2734, LESTER, F-56321 Lorient, France

marc.sevaux@univ-ubs.fr

1 Introduction

The course timetabling problem has been tackled using a wide range of exact methods, heuristics and
meta-heuristics. In recent years, the term hyper-heuristic has emerged for referring to methods that
use (meta-) heuristics to choose (meta-) heuristics [8]. Then, a hyper-heuristic is a process which,
given a particular problem instance and a number of low-level heuristics, manages the selection and
acceptance of the low-level heuristic to apply at any given time, until a stopping condition is met.
Low-level heuristics are simple local search operators or domain dependent heuristics. Typically,
a hyper-heuristic is meant to search in the space of heuristics instead of searching in the solution
space directly. One of the main challenges in designing a hyper-heuristic method is to manage the
low-level heuristics with minimum parameter tuning.

Early research work on hyper-heuristics focused on the development of advanced strategies for
choosing the heuristics to be applied at different points of the search. For example, Soubeiga [24]
used a choice function that incorporates principles from reinforcement learning. That choice function
rewards or penalises the low-level heuristics according to their success in finding a better solution.
Another mechanism based on tabu search was proposed by Burke et al. [9] in which a tabu list is used
to prevent (for a number of iterations) the acceptance of low-level heuristics with poor performance.
Ross et al. [20] used a learning classifier system to learn which heuristics were more useful than
others when tackling bin packing problems. Other hyper-heuristic approaches include the GA-based
hyper-heuristic by Cowling et al. [14], the case-based hyper-heuristic approach by Burke et al. [11]
and the ant-based hyper-heuristic by Burke et al. [12]. Also, researchers have proposed different
acceptance criteria to drive the selection of low-level heuristics within a hyper-heuristic framework.
For example, Soubeiga [24] used a simulated annealing acceptance criterion, Ayob and Kendall [5]
used a Monte Carlo acceptance criterion while Kendall and Mohamad [15] used the great deluge
acceptance criterion.

Hamburg, Germany, July 13–16, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M
IC

20
09

id-2 MIC 2009: The VIII Metaheuristics International Conference

In this paper, we propose an approach that uses a learning mechanism and a non-linear great
deluge acceptance criterion in order to choose which low-level heuristic to apply while solving course
timetabling problem instances. Section 2 describes the course timetabling problem tackled in this
work. Section 3 reviews previous meta-heuristic and hyper-heuristic methods used to tackle this
problem. Section 4 presents the non-linear great deluge hyper-heuristic method proposed in this
paper while Section 5 describes and discusses our experimental results. Finally, conclusions and
future research are the subject of Section 6.

2 The University Course Timetabling Problem

The university course timetabling problem can be defined as a process of allocating, subject to
predefined constraints, a set of limited timeslots and rooms to courses, while satisfying as nearly
as possible a set of desirable objectives. In the timetabling problem, constraints can be divided
into two categories: hard and soft constraints. A timetable is said to be feasible (usable) if no
hard constraints are violated. However, soft constraints may be violated and the objective is to
minimise their violation in order to increase the quality of the timetable. The course timetabling
problem is very complex (as discussed by Cooper and Kingston [13]) and common to a wide range of
educational institutions. The manual process of preparing the timetable is tedious, time consuming
and yet not guaranteed to produce a timetable free of conflicts.

Several formulations of the course timetabling problem exist in the literature. We adopt the
one by Socha et al. [22] and the corresponding benchmark data sets in order to test the algorithm
proposed in this paper. More formally defined, the course timetabling problem solved in this paper
consists of the following: n events E = {e1, e2, . . . , en}, k timeslots T = {t1, t2, . . . , tk}, m rooms
R = {r1, r2, . . . , rm} in which events can take place, a set F of room features satisfied by rooms and
required by events, and a set S of students. Each room has a limited capacity and each student
attends a number of events. The problem is to assign n events to k timeslots and m rooms in such
a way that all hard constraints are satisfied and the violation of soft constraints is minimised. The
benchmark data set proposed by Socha et al. [22] involves 11 instances which are split according to
their size into 5 small, 5 medium and 1 large. For the small instances, n = 100, m = 5, |S| = 80,
|F | = 5. For the medium instances, n = 400, m = 10, |S| = 200, |F | = 5. For the large instance,
n = 400, m = 10, |S| = 400, |F | = 10. For all instances, k = 45 (9 hours in each of 5 days).

There are 4 hard constraints: 1) a student cannot attend two events simultaneously (events
with students in common must be timetabled in different timeslots); 2) only one event can be
assigned per timeslot in each room; 3) the room capacity must be equal to or greater than the
number of students attending the event in each timeslot; 4) the room assigned to the event must
satisfy the features required by the event. There are 3 soft constraints: 1) students should not
have exactly one event timetabled on a day; 2) students should not attend more than two consecutive
events on a day; 3) students should not attend an event in the last timeslot of the day.

3 Summary of Related Work

Meta-heuristics have been used successfully to solve some of the course timetabling problems de-
scribed above. Socha et al. first proposed an MAX-MIN ant system [22] and then later an ant colony

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

system [23] in which artificial ants follow a construction graph to build a timetable. Rossi-Doria et
al. [21] compared the performance of several meta-heuristics to solve this problem. The methods
compared were: evolutionary algorithm, ant colony optimisation, iterated local search, simulated
annealing, and tabu search. No best results were reported by Rossi-Doria et al. as the intention was
to assess the strength and weaknesses of each algorithm. Asmuni et al. [4] implemented fuzzy mul-
tiple heuristic ordering in which fuzzy logic was used to establish the ordering of events prior to be
timetabled. Abdullah et al. [1] proposed versions of variable neighbourhood search while Abdullah
et al. [2] applied a randomised iterative improvement approach using a composite of eleven neigh-
bourhood structures in exploring the current solution. Later, Abdullah et al. [3] presented a hybrid
approach combining a mutation operator with their previous randomised iterative improvement
procedure. Recently, a non-linear great deluge algorithm (NLGD) was proposed by Landa-Silva
and Obit [16]. That method produced new best results in 4 out of 11 problem instances. Finally,
McMullan [18] proposed an extended great deluge algorithm (EGD), which allows re-heating similar
to simulated annealing, and found new best results for the 5 medium instances.

Hyper-heuristics have also been investigated for solving this course timetabling problem. Burke
et al. [9] applied a choice function hyper-heuristic which also uses a tabu list to guide the iterative
application of a set of simple local search heuristics. Rattadilok et al. [19] proposed a distributed
choice function hyper-heuristic and implemented two designs based on a parallel architecture: hi-
erarchical and agent-based. Burke et al. [10] proposed a graph-based hyper-heuristic in which a
tabu search procedure is used to change the permutations of six graph colouring heuristics before
applying them to construct a timetable. The key feature of that approach is to find good ordering
of constructive heuristics to schedule the events. Bai et al. [6] developed a simulated annealing
hyper-heuristic which selects low-level heuristics based on a stochastic ranking mechanism.

4 The Non-linear Great Deluge Hyper-heuristic

In this paper, we extend our non-linear great deluge algorithm (NLGD) [16] following the hyper-
heuristic methodology, i.e. we incorporate a mechanism to select the low-level heuristics to apply
at each step of the search process. That is, while in a NLGD meta-heuristic candidate solutions
are accepted or not based on the great deluge criterion, in the proposed Non-Linear Great Deluge
Hyper-heuristic (NLGDHH) it is candidate low-level heuristics which are accepted or not, i.e. the
method operates in the heuristic search space.

Figure 1 illustrates the proposed method in which the low-level heuristics are local search op-
erators which explore the solution space while the learning mechanism and the non-linear great
deluge acceptance criterion explore the heuristic space. At present, we are working with few low-
level heuristics, but given the promising results so far, we intend to incorporate a larger number of
low-level heuristics and of different type in the extended version of this work. We use the non-linear
great deluge criterion because of its simplicity and less dependent nature upon parameter tuning
compared to simulated annealing [7, 16]. The low-level heuristics implemented in this work are
listed below. These heuristics are based on random search but always ensuring the satisfaction of
hard constraints.

H1: selects 1 event at random and assigns it to a feasible random pair timeslot-room.
H2: selects 2 events at random and swaps their timeslot-room while ensuring feasibility.
H3: selects 3 events at random and exchanges timeslot-room at random while ensuring feasibility.

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-4 MIC 2009: The VIII Metaheuristics International Conference

P

R

O

B

L

E

M

D

O

M

A

I

N

B

A

R

R

I

E

R

Apply low level

heuristic

NLGD Acceptance

Criterion

Selection criteria

(Learning Mechanism)

NLGD Hyper-heuristic

Problem Domain

n
HHHH,, 321

Set of Low Level Heuristic

Evaluation Function

Reward and

Punishment

Figure 1: Non-Linear Great Deluge Hyper-heuristic Approach

4.1 Non-linear Great Deluge (NLGD) Acceptance Criterion

The NLGD acceptance criterion refers to accepting improving and non-improving low-level heuristics
depending of the performance of the heuristic and the current water level B. Improving heuristics
are always accepted while non-improving ones are accepted only if the detriment in quality is less
than or equal B. The initial water level is usually set to the quality of the initial solution and then
decreased by a non-linear function proposed in our previous work [16] as follows:

B = B × (exp−δ(rnd[min,max])) + β (1)

The various parameters in Eq. (1) control the speed and the shape of the water level decay rate.
Parameter β influences the shape of the decay rate and it represents the minimum expected penalty
corresponding to the best solution. The role of parameters min and max is to control the speed of
the decay rate. Therefore, for higher values of min and max, the water level decreases more rapidly
and hence, improvements to the solution quality are also achieved faster. However, the search could
get stuck and to avoid this, it is necessary sometimes to relax the water level. When the water level
is about to converge to the current penalty cost, the algorithm then allows the water level to go up.

We set δ = 5 × 10−7 and β = 0 for all datasets. The reason for setting β = 0 is that we
want B to reach the value of zero by the end of the search. If for a given problem, the minimum
penalty that should achieved is lets say 100, then β should be set around that value. If there is no
previous knowledge on the minimum penalty expected (best expected fitness), then we suggest to
tune β through preliminary experimentation for the problem in hand. The values of min and max
in Eq. (1) are set according to the current penalty cost. When the penalty cost is more than 20 we
use min = 80000 and max = 90000. When the penalty cost goes below 20 we use min = 20000
and max = 30000. When the range < 1 (range is the difference between the water level B and the
current penalty), B is increased by a random number within the interval [Bmin, Bmax], we call this
mechanism floating B. For small and medium problem instances the interval used is [0.85, 1.5] while
for the large problem instance the interval used is [1, 5].

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

4.2 Learning Mechanism

A simple learning mechanism (adapted from Bai et al. [6]) guides the selection of low-level heuristics
during the search. Initially, all low-level heuristics have the same probability to be selected for
exploring the solution space. The learning mechanism tunes the priorities of the low-level heuristics
as the search progresses so that the algorithm tries to learn which low-level heuristic to use in order
to better explore the solution space. In this paper, we investigate two types of learning mechanisms:
learning with static memory length and learning with dynamic memory length as described below.

4.2.1 Learning with Static Memory Length

In each iteration, a low-level heuristic i is selected with probability pi given by Eq. (2) where n is
the number of heuristics and wi is the weight assigned to each heuristic.

pi =
wi∑n
i=1wi

(2)

Initially, every weight is set to wi = 0.01 but from the first iteration, the algorithm starts
to reward or punish the heuristics according the their performance. When the chosen heuristic
improves the current solution, a reward of 1 point is given to the heuristic. If the heuristic does not
improve the solution, the punishment is to award no points. This amount of reward/punishment
never changes. However, the algorithm updates the set of weights wi in every learning period (lp)
given by lp = max(K/500, n) where K is the total number of feasible moves explored.

We use the following counters to track the performance of each low-level heuristic: Ctotali,
is the number of times that heuristic i is called; Cnewi is the number of times that heuristic i
generates solutions with different fitness value; and Caccepti is the number of times that heuristic
i meets the non-linear great deluge acceptance criterion. Each heuristic weight wi is updated at
every learning period lp and normalised by the ratio Caccepti/Ctotali when range > 1 and by
Cnewi/Ctotali when range < 1. At every learning period lp and if range < 1, the water level
increases to B = B + rand[Bmin, Bmax], we call this mechanism surge B. We set Bmin equal to 1
and Bmax equal to 4 regardless to the size of the dataset. Note that the water level can increase
due to the floating B (continuous) mechanism or the surge B (every lp feasible moves) mechanism.

4.2.2 Learning with Dynamic Memory Length

In each iteration, a low-level heuristic i is selected with probability pi given by Eq. (3) where n is
the number of heuristics, wi is the weight assigned to each heuristic and wmin = min {0, wi}.

pi =
wi + wmin∑n
i=1wi + wmin

(3)

Initially, every weight is set to wi = 0.01 as before but now each wi is updated every time the
algorithm performs a feasible move. When the selected heuristic improves the current solution, the
heuristic is rewarded, otherwise the heuristic is punished. The value <ij of reward/punishment

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-6 MIC 2009: The VIII Metaheuristics International Conference

applied to heuristic i at iteration j is as given below where r = 1, = = 0.1 and ∆ is the difference
between the best solution (lowest penalty) so far and the current solution (current penalty).

<ij =

r if ∆ < 0
−r if ∆ > 0
= if ∆ = 0 and new solution
−= if ∆ = 0 and no new solution
0 if not elected

Then, at each iteration h, each weight wi is calculated using Eq.(4) where σ gives the length of
the dynamic memory.

wih =
h∑
j=k

σj<ij (4)

In every learning period lp, the algorithm updates σ with a random value in (0.5, 1.0]. Here, we
also set lp = max(K/500, n) as before. At every learning period lp and if range < 1, the water level
increases to B = B + rand[Bmin, Bmax]. We set Bmin equal to 1 and Bmax equal to 4 regardless to
the size of the dataset.

5 Computational Experiments and Results

To evaluate the performance of the proposed algorithm, we conducted a range of experiments using
the standard course timetabling benchmark instances proposed by Socha et al. [22]. For each
problem instance we executed our algorithm 10 times. The stopping condition was a maximum
of 500K feasible moves or maximum computation time tmax or achieving a penalty value of zero,
whatever was sooner. For small instances we set tmax = 0 as the algorithm takes less than 2500
seconds (42 minutes) to explore the 500K feasible moves and most of the times achieving penalty
zero. For medium instances we set tmax = 3 hours and the algorithm is capable of exploring
around 300K feasible moves in that time. For the large instance we set tmax = 5 hours and the
algorithm is capable of exploring between 100K and 250K feasible moves in that time. Our previous
NLGD meta-heuristic [16] was not able to improve results even after extending the execution time.
However, the approach proposed here is now able to find better solutions thanks to the learning
mechanism that selects low-level heuristics accurately to further improve the solution quality.

We first compare the proposed NLGDHH (with static and with dynamic memory length) to pre-
vious great deluge meta-heuristics in order to assess the contribution of the non-linear acceptance
criterion and the learning mechanism. Table 1 shows the results obtained by the non-linear great
deluge hyper-heuristic with static (NLGDHH-SM) and with dynamic (NLGDHH-DM) memory, the
extended great deluge (EGD) [18], the non-linear great deluge (NLGD) [16], the evolutionary non-
linear great deluge (ENLGD) [17] and the conventional great deluge (GD). We can see in Table 1
that NLGDHH-SM mostly outperforms NLGDHH-DM in terms of the number of best solutions
found across all instances. Both variants of the proposed method obtain equal or better results
than the other approaches, except for instances M5 and L where EGD found better solutions. How-
ever, NLGDHH-SM produced better solutions for 8 out of the 11 instances. In fact, NLGDHH-SM

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-7

improved the solutions by 11.25% for M1, 21.9% for M2, 1.44% for M3, and 37.5% for M4. The
average improvements are 9.86%, 23.52%, 8.82% and 27.11% for M1, M2, M3 and M4 respectively.
For M5, EGD produced an improvement of 16.98% over NLGDHH-SM while the average improve-
ment was 13.51%. For the large instance, the best result obtained by EGD is 6.05% better and
in average 8.45% better than NLGDHH-SM. The overall performance of both NLGDHH-SM and
NLGDHH-DM is quite good according to these results.

Table 1: Comparison of the proposed great deluge based hyper-heuristic and other great deluge
methods from the literature.

Instance NLGDHH-SM NLGDHH-DM EGD NLGD ENLGD GD
Best Avg Best Avg Best Avg Best Best Best

S1 0 0.4 0 0.9 0 0.8 3 0 17

S2 0 0.7 0 1.5 0 2 4 1 15

S3 0 1 0 1.9 0 1.3 6 0 24

S4 0 1.2 0 1.4 0 1 6 0 21

S5 0 0 0 0.4 0 0.2 0 0 5

M1 71 91.4 88 107 80 101.4 140 126 201

M2 82 89.4 88 103.1 105 116.9 130 123 190

M3 137 147.8 112 148.7 139 162.1 189 185 229

M4 55 79.3 84 97.3 88 108.8 112 116 154

M5 106 138.4 103 130 88 119.7 141 129 222

L 777 911.1 915 1017.4 730 834.1 876 821 1066

We now compare the proposed NLGDHH to other hyper-heuristics reported in the literature.
Table 2 presents results obtained by NLGDHH-SM, NLGDHH-DM, the choice function hyper-
heuristic (CFHH) [9], the case-based hyper-heuristic (CBHH) [10], the simulated annealing hyper-
heuristic (SAHH) [6] and the distributed-choice function hyper-heuristic (DCFHH) [19]. We see
that the proposed method finds equal or better solutions for 10 out of the 11 instances. For all
small instances, both NLGDHH-SM and NLGDHH-DM are able to find the optimal solutions.
For all medium instances, the NLGDHH variants achieve a significant improvement over the other
hyper-heuristics. The NLGDHH approaches are also quite competitive in the large instance when
compared to the results obtained by SAHH.

Table 2: Comparison of the proposed great deluge based hyper-heuristic and other hyper-heuristics
from the literature.

NLGDHH-SD NLGDHH-DM CFHH CBHH SAHH (DCFHH)

S1 0 0 1 6 0 1

S2 0 0 2 7 0 3

S3 0 0 0 3 1 1

S4 0 0 1 3 1 1

S5 0 0 0 4 0 0

M1 71 88 146 372 102 182

M2 82 88 173 419 114 164

M3 137 112 267 359 125 250

M4 55 84 169 348 106 168

M5 106 103 303 171 106 222

L1 777 915 1166 1068 653 -

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-8 MIC 2009: The VIII Metaheuristics International Conference

Finally, we compare the results obtained by the proposed algorithm to the best results reported
in the literature for the subject problem. The first two columns in Table 3 show the best results
obtained by the algorithm proposed here while the third column shows the best known results and
the corresponding approaches. It should be noted that although a timetable with zero penalty
exists for each problem instance (the data sets were generated starting from such a timetable [22]),
to the best of our knowledge no heuristic method has found the ideal timetable for the medium
and large instances. Hence, these data sets are still very challenging for heuristic search methods.
For all small instances, both approaches NLGDHH-SM and NLGDHH-DM produced optimal solu-
tions. For medium instances, NLGDHH-SM improved the best solutions of M1, M2, M3, and M4
while NLGDHH-DM improved the best solution of M1, M2, M3, and M4. For the large instance,
neither NLGDHH-DM nor NLGDHH-DM improved the best solution reported but they are very
competitive.

Table 3: Comparison of the proposed great deluge based hyper-heuristic to the best results reported
in the literature for the Course Timetabling Problem of Socha et al. [22].

NLGDHH-SM NLGDHH-DM Best Known

S1 0 0 0 (VNS-T)

S2 0 0 0 (VNS-T)

S3 0 0 0 (CFHH)

S4 0 0 0 (VNS-T)

S5 0 0 0 (MMAS)

M1 71 87 80 (EGD)

M2 82 88 105 (EGD)

M3 137 112 139 (EGD)

M4 55 84 88 (EGD)

M5 106 103 88 (EGD)

L1 777 915 529(HEA)

NLGDHH-SM is the Non-Linear Great Deluge Hyper-heuristic with fixed memory length
NLGDHH-DM is the Non-Linear Great Deluge Hyper-heuristic with dynamic memory length
MMAS is the MAX-MIN Ant System in [22]
CFHH is the Choice Function Hyper-heuristic in [9]
VNS-T is the Hybrid of VNS with Tabu Search in [1]
HEA is the Hybrid Evolutionary Algorithm in [2]
EGD is the Extended Great Deluge in [18]

6 Conclusions

We have developed a heuristic approach that uses a learning mechanism and a non-linear great del-
uge acceptance criterion to manage the selection of low-level heuristics during the search process.
The method focuses on trying to choose the most appropriate heuristic in each step of the search
and hence it follows the hyper-heuristic concept. We appplied the proposed method to well-known
instances of the university course timetabling problem proposed by Socha et al. [22]. The exper-
imental results showed that the proposed non-linear great-deluge hyper-heuristic (NLGDHH) was
able to find new best solutions for 4 out of the 11 problem instances compared to results reported in
the literature. However, for the large instance, the algorithm produced only competitive results. We
believe that for very large search spaces, the learning mechanism becomes less effective. Our future
work contemplates the decomposition of large problems into smaller ones where the proposed algo-

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-9

rithm seems to be very effective. We also want to incorporate a larger number of low-level heuristics
and perhaps some more specialised operators. Another issue that requires further investigation is
the robustness of the learning mechanism with respect to the various algorithm parameters.

References

[1] S. Abdullah, E.K. Burke, B. McCollum. An investigation of variable neighbourhood search
for university course timetabling. In: Proceedings of the 2nd Multidisciplinary Conference on
Scheduling: Theory and Applications, pages 413-427, NY, USA, 2005.

[2] S. Abdullahm, E.K. Burke, B. Mccollum. Using a randomised iterative improvement algorithm
with composite neigjhbourhood structures for university course timetabling. In: Metaheuristics
- progress in complex systems optimization, Springer, pages 153-172, 2007.

[3] S. Abdullah, E. Burke, B. McCollum. A hybrid evolutionary approach to the university course
timetabling problem. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation
(CEC 2007), pages 1764-1768, 2007.

[4] H. Asmuni, E. Burke, J. Garibaldi. Fuzzy multiple heuristic ordering for course timetabling. In:
Proceedings of the 5th United Kingdom Workshop on Computational Intelligence (UKCI 2005),
pages 302-309, 2005.

[5] M. Ayob, G. Kendall. An investigation of an adaptive scheduling approach for multi-head
placement machines. In: Proceedings of the 1st Multidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA 2003), pages 363-380, Nottingham, UK, 2003.

[6] R. Bai, E.K. Burke, G. Kendall, B. McCollum. Memory length in hyper-heuristics: An empirical
study. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling
(CISched2007), pages 173-178, Hawaii, USA, 2007.

[7] E. Burke, Y. Bykov, J.P. Newall, S. Petrovic. A time-predefined approach to course timetabling.
Yugoslav Journal of Operations Research (YUJOR), 13(2):139-151, 2003.

[8] E. Burke, K. Hart, G. Kendall, J. Newall, P. Ross, S. Schulenburg. Hyper-Heuristic: an emerging
direction in modern search technology. In: Fed Glover, Gary A. Kochenberger (eds.) Handbook
of Meta-heuristics, pages 457-474, Kluwer Academic Publishers, 2003.

[9] E. Burke, G. Kendall, E. Soubeiga. A tabu-search hyperheuristic for timetabling and rostering.
Journal of Heuristics, 9:451-470, 2003.

[10] E. Burke, B. McCollum, A. Meisels, S. Petrovic, Q. Rong. A graph based hyper-heuristic
for educational timetabling problems. European Journal of Operational Research, 176:177-192,
2007.

[11] E. Burke, S. Petrovic, R. Qu. Case based heuristic selection for timetabling problems. Journal
of Scheduling, 9(2):115-132, 2006.

[12] E.K. Burke, G. Kendall, J.D. Landa-Silva, R. O’Brien, E. Soubeiga. An ant algorithm hyper-
heuristic for the project presentation scheduling problem. In: Proceedings of the 2005 IEEE

Hamburg, Germany, July 13–16, 2009

M
IC

20
09

id-10 MIC 2009: The VIII Metaheuristics International Conference

Congress on Evolutionary Computation (CEC 2005), Volume 3, pages 2263-2270, Edinburgh,
Scotland, 2005.

[13] T.B. Cooper, H. Kingston. The complexity of timetable construction problems. In: Selected Pa-
pers from the 1st International Conference on the Practice and Theory of Automated Timetabling
(PATAT 1995), LNCS, 1153, Springer, pages 283-295, 1996.

[14] P. Cowling, G. Kendall, L. Han. An investigation of a hyper-heuristic genetic algorithm applied
to a trainer scheduling problem. In: Proceedings of the 2002 IEEE Congress on Evolutionary
Computation (CEC 2002), pages 1185-1190, Honolulu, Hawaii, 2002.

[15] G. Kendall, M. Mohamad. Channel assignment in cellular communication using a great del-
uge hyper-heuristic. In: Proceedings of the 2004 IEEE International Conference on Network
(ICON2004), pages 769-773, Singapore, 2004.

[16] D. Landa-Silva, J.H. Obit. Great deluge with nonlinear decay rate for solving course timetabling
problems. In: Proceedings of the 2008 IEEE Conference on Intelligent Systems (IS 2008), IEEE
Press, pages 8.11-8.18, 2008.

[17] D. Landa-Silva, J.H. Obit. Evolutionary nonlinear great deluge for university course
timetabling. To appear In: Proceedings of the 2009 International Conference on Hybrid Ar-
tificial Intelligence Systems (HAIS 2009), 2009.

[18] P. McMullan. An extended implementation of the great deluge algorithm for course timetabling.
In: Proceedings of the 2007 International Conference in Computational Science (ICCS 2007),
LNCS 4487, Springer-Verlag, pages 538-545, 2007.

[19] P. Rattadilok, A. Gaw, R. Kwan. Distributed choice function hyper-heuristics for timetabling
and scheduling. In: Proceedings of the 5th International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2004), 2004.

[20] P. Ross, S. Schulenburg, J. Marin-Blazquez, H. Hart. Hyper-heuristic: Learning to combine
simple heuristic in bin-packing problems. In: Proceedings of the 2002 Genetic and Evolutionary
Computation Conference (GECCO 2002), pages 942-948, New York, USA, 2002.

[21] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. Gambardella, J.
Knowles, M. Manfrin, L. Mastrolilli, B. Paechter, L. Paquete, T. Stuetzle. A comparion of the
performance of different metaheuristics on the timetabling problem. In: Selected Papers from
the 4th International Conference on the Practice and Theory of Automated Timetabling (PATAT
2002), LNCS 2740, Springer, pages 330-352, 2003.

[22] K. Socha, J. Knowles, M. Samples. A max-min ant system for the university course timetabling
problem. In: Ant Algorithms: Proceedings of the Third International Workshop (ANTS 2002),
LNCS 2463, pages 1-13, Springer, 2002.

[23] K. Socha, M. Sampels, M. Manfrin. Ant algorithms for the university course timetabling prob-
lem with regard to the state-of-the-art. In: Applications of Evolutionary Computing: Proceedings
of the 2003 EvoWorkshops, LNCS 2611, Springer, pages 334-345, 2003.

[24] E. Soubeiga. Development and application of hyper-heuristic to personnel scheduling. PhD
thesis, School of Computer Science, University of Nottingham, UK, 2003.

Hamburg, Germany, July 13–16, 2009

