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Abstract. This paper presemta new hybrid evolutionary algorithm to solve multi-objective
multicast routing problems in telecommunication networkke algorithm combines simulated
annealing strategies and genetic local search, aimiagratre flexible and effective exploration
and exploitation in the search space of the complex problem to firel moordominated solutions
in the Pareto Front. Due to the complex structure of the multicast trespweosand mutation
operators have been specifically devised concerning the featuresrestichics in the problenf
new adaptive mutation probability based on simulated annealing is propodee imybrid
algorithmto adaptively adjust the mutation rate according to the fitness of the netwis@gainst
the average quality of the current population during the evolution guoeeTwo simulated
annealing based search direction tuning strategies are applied to improve thecgffanel
effectiveness of the hybrid evolutionary algorithm. SimulationseHasen carried out on some
benchmark multi-objective multicast routing instances and a large ambuabhdom networks
with five real world objectives including cost, delay, link utilizationgerage delay and delay
variation in telecommunication network&Experimental results demonstrate that both the
simulated annealing strategies and the genetic local search withimofmesed multi-objective
algorithm, compared with other multi-objective evolutionary algorithcas, efficiently identify
high quality non-dominated solution set for multi-objective multicastting problems and
outperform other conventional multi-objective evolutionary algorithmberliterature.

Keywords Multi-objective Genetic Local Search, Simulated Annealing, Multicast
Routing

1 Introduction

1.1 The Multicast Routing Problem (MRP)

Multicast is a telecommunication technique that simultaneously tramsfersiation (IP
datagrams) from a source to a group of destinations in communication networks
Compared to unicast, which relies on the ptaapoint transmission, multicast is a more
efficient solution which utilises the parallelism in networks. In this wask consider the
Multicast Routing Problem (MRP), which concerns finding the spanning tree while
optimising the resource usage within the network. Due to the increasing devel@gbment
numerous multicast network applicatiomeluding distance learning, E-commerce and



video/audio conferencing, the MRP has become one of the key problems in multimedia
telecommunications and received increasing research attention in operational research.

Real world multicast applications generally have some Quality of Service (QoS)
parameters or constraints and objectives. For example, an important and common QoS
constraint in multicast routing applications is the boundedte®setd delay. That is,
messages must be transmitted from the source to destinations via the nitdgcagiin
a certain limited time; otherwise most customers would cancel their requests. The
efficient allocation of network resources to satisfy different QoS reapgints, for
example, mininsing the cost of transmission via the multicast tree, is the primary goal of
QoS-based multicast routing.

It is well known that the Steiner tree problem (Hwang and Richh®82), the
underlying model of MRPs, isidP-hard combinatorial optiisation problem (Garey and
Johnson 1979). It has also been proved that finding a feasible multicast tinevaevi
independent path constraints is NP-hard (Chen and Nahrestedt TB88%onstrained
Steiner tree problem under various QoS constraints is thus also NP- hard (Komalella et
1993). This makes the complex QoS based MRPs one of the challenging optimisation
problems. Over the past decade, the problem has attracted increasing dfttemtitre
meta-heuristic research community in both computer communications and operational
research (Diot et al. 199%eo et al. 2004 Oliveira et al. 2005). A large amount of
investigations on meta-heuristic algorithms exist in the literature (Haghit al. 2004
Kun et al. 2005 Skorin-Kapov and Kos 200&ahrani et al. 20Q8Qu et al. 2009).
However, at the early stage, the MRPs have been mainly defined and solved as a single-
objective optimisation problem subject to certain QoS constraints, i.e. tmisgnihe
tree cost subject to a maximum eiweknd delay restriction.

With a range of inter-dependent and conflicting multiple QoS objectives and
constraints (e.g. cost, delay, bandwidth, linkisdtion, delay variation, packet loss ratio
and hop count) in real world applications, the QoS-based MRPs can be more
appropriately defined as multi-objective optimisation problems. Recent objgitive
optimisation algorithms for MRPs have been investigated concerning more cealisti
constraints and objectives.

1.2 Related Work

A recent survey in (Fabregat et al. 2005) has reviewed a variety ofabjective
multicast routing algorithms. In Table 1, we catégometa-heuristic algorithms in the
literature according to the objectives and constraints considered in problaeg av
single multicast tree is constructed. It can be seen that different meta-bgueigti
genetic algorithm, ant colony algorithm, artificial immune algorithm andgbarswarm
optimisation, have been investigated for multi-objective MRPs with vanbjectives
Due to the nature of multi-objective optimisation, where a set of alieznsdlutions is
considered, it is not surprising to see that genetic algorithms, one of the stodigd
population based algorithms, have been adapted in most multi-objective multicass routi
algorithms.

Roy et al. (2002) adapt the widely studied multi-objective NSGA (Non-doednat
Sorting based Genetic Algorithm) (Srinivas and Deb 1994) to simultaneouslyiseptim
end{o-end delay, bandwidth and residential bandwidth utilisation rather than combining
them into a single weighted sum objective function for wireless network routing problems.
Due to the user mobility and uncertainties in wireless cellular netw&dg and Das
(2004) employ a fast and efficient QoS-based mobile multicast routing pro@sed on
multi-objective genetic algorithms for dynamicR¥s. In Crichigno and Baran (2004a)
and Crichigno and Baran (2004b), two multi-objective evolutionary algorithms @JOE
with an external population of Pareto optimal solutions have been proposed balsed on t
strength Pareto evolutionary algorithm (Zitzler and Thiele 1999). Experiheerddysis
shows that MOEA1 with a binary tournament selection outperforms MOEA2 awith
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roulette wheel selection. Other multi-objective genetic algorithms ind{ogama et al.
(2004), which optirise the cost and delay of the multicast tree and Cui et al. (2003)
which develop the algorithm based on Pareto dominance.

Table 1. Multi-objective multicast routing meta-heuristics, categorised by tivlejecand

constraints considered, ordered by the year of publication. (MOEA:-ahjéctive evolutionary
algorithm; MOGA: multi-objective genetic algorithm)

Objectives Constra
ints
M eta-heuristic Algorithms ol oo %E g -3 gl gc o
2 o 22832 é.ﬁg::mig
< <8|F = ol = |& <
D35 5 QR |<
MOEA based on NSGA (Roy et al. 2002) X X X
MOGA (Cui et al.2003) X X X
QoS-based mobile multicast routing protocol base X X X
onMOGA (Roy and Da004)
MOEAL1 (Crichigno and Baran 2004a) and MOEA!
(Crichigno and Baran 2004b) based on the streng x | X X X
Pareto evolutionary algorithm
MOGA (Koyama et al2004) X | x
Multi-objective Ant colony optirisation systems x | x x x
(Diego and Barar2005)
Multi-objective immune algorithm (Wang et al x | x X x | x
2006)
Hybrid genetic algorithm and particle swarm % | x " X
optimisation (Li et al.2007)
MOGA with Fuzzy based parameter setting for Qa
multicasting in wireless ad hoc networks (Rai et al X X | x
2010)
MOGA for QoS multicasting in wireless ad hoc x X X X
networks (Huang and Liu 2010)
Evolutionary multi-objective simulated annealing x x | x| x x
(Xu and Qu 2011)

A variety of other population based meta-heuristics also appear in thte mul
objective multicast routing literature. Two ant colony optimisatitgorithms in (Diego
ard Baran 2005) have shown to find more non-dominated solutions than the MOEA2
algorithm in (Crichigno and Baran 2Qtidon benchmark problems with different features
using the same computational expenses. Wang et al. (2006) propose a QoS multicast
routing model based on an artificial immune system with a gene library armha cl
search operator to search for better solutions. The algorithm can efferdimatify a set
of Pareto optimisation solutions compromising multiple QoS objectives. Paaticien
optimisation has also been investigated in (Li et al. 2007) to enhance selected elite
individuals before generating the next generation within a hybrid multi-olgegénetic
algorithm.

In the recent multi-objective optimisation research, various simulated|sagn€sA)
approaches (Czyzzak and Jaszkiewicz 1998; Ehrgott and Gandibleux 2000; Landa-Silva
et al. 2004 Li and Landa-Silva 2008; Martins and Costa 2020 and Qu 2011) have
been successfully applied for different multi-objective optimization prahlémnnealing
is known as a thermal process, where a solid is melted by increasing its tenepanal
then followed by a slow progressive temperature decrease aiming at recoveriiy a sol
state of lower energy. TH&A algorithm simulates the physical annealing process to solve
optimisation problems, where a solution corresponds to a state of the physeal agst
the fitness value of a solution corresponds to the energy of a state. It hasittheahik
process to escape from local optima by visiting worse neighbouring solutiorshamsl
to be very effective when exploring the search space of complex multi-objectiv
optimisation problems. Meanwhile, genetic local search algorithms (Ishibuchi and Murata
1998; Jaszkiewirc2002 Mendoza et al. 20)(have been investigated for different multi-
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objective optinsation problems. Due to the ability of local search to find local optima
effectively over a relatively small part of the search space, geneticskarah algorithms
have been shown to be very suléafor solving complex multi-objective optimisation
problems. Refer to (Beume et al. 2007; Zhang lan@007; Li and Zhang, 2009; Bader
and Zitzler, 201 lIshibuchi et al. 2011; etc.) for some recent multi-objective optimization
algorithms.

To our knowledge, there is no investigation on hybridiZ8#y with genetic local
search algorithms to multi-objective MRPs. The only two recent relevgmtitains that
we are aware of are applied to single objective MRPs. In (Zahrani €08, 28 genetic
local search utilisea logarithmic simulated annealing in a pre-processing step tozanaly
the landscape of a single objective MRP subject to multiple constraints ioug gr
multicast scenario. Another genetic simulated annealing algorithm has beesegatan
(Zhang et al. 2009) for delay jitter bounded least-cost MRP with bandwidth and dela
constraints. Simulated annealing is used to compute the probability of accepting newly
generated solutions. These two methods have shown to be effective in solving single
objective MRPs.

In our recent work (Xu and Qu 2011), simulated annealing strategies have shown t
be effective in driving a population of solutions towards the Pareto @folWtiRPs with
four objectives. However, together with the variable neighborhoods specially designed
for MRPs, they have shown to have much less impact on the algorithm performance. In
solving complex problems such as MRPs with special solution structure, specifically
designed neighborhood operators with regard to problem features have shown to be
highly effective on improving algorithm performance.

In this work, motivated by the efficiency of both the simulated anmgairategies
and genetic local search, we develop the first multi-objective simulated iagnleated
genetic local searchMOSAGLS) algorithm to solve the multi-objective MRPs. The
hybrid MOSAGLS algorithm aims to combine the strengths of both Simulated Annealing
and Genetic Algorithm. On the one hand, genetic algorithms have been widely used for
solving multi-objective optimisation problems in the literature due éir thopulation-
based nature and the abilitysimultaneously search different regions of a solution space.
On the other hand, Simulated Annealing has the character of escaping from limsal opt
by intelligently acepting worse solutions thus addressing the issue of premature
convergence of GAs. In our proposed MOSAGLS, a new genetic local search with
genetic operators which are specially designed for MRPs has been developed to
simultaneously minimise five real life objectives, namely (1) the c@sthé maximum
end{o-end delay, (3) the maximum link utilisation (4) the average delay and (5 of th
delay variation of the multicast tree. MOSAGLS evolves by uSiAgased strategies
within the genetic evolutionary process to generate non-dominated solutiops: A-
based adaptive mutation probability is also used to improve the performance of the hybrid
algorithm. The impact of th&A strategies and the local search within the genetic
evolution has been investigated within this new hybrid algorithm.

The rest of the paper is organised as follows. In Sectitre2nulti-objective MRP is
formally defined Section 3 and Section 4 present the proposed hybrid algorithm and
evaluate its performance by experimental results. Finally, Section 5 concludes the paper.

2 The Multi-objective MRP

The multi-objective optinsation problem with n decision variables, k objective functions
and q restrictions can be definesfollows (Deb 2005):

Optimise F(X) = (k(X), f2(X), ..., f(X)) Q)



s.t. e(X) = (&X), &(X), ..., &(X) =0

where
X: the decision space of feasible regions in the solution space.
X: a vector of decision variables or a solution, X5 %% ..., X)) € X
fi(x) (i=1,..., K): objective functions with k objectives to be opted
F(X): the image of x in the k-objective space given by the vector of éctibg
functions {(x).
e(xX) (i=1,..., g): the set of restrictions which determines the set of feasible solutions.

Multi-objective optimisation generally concerns a set of trade-off optolations, none
of which can be considered superior to the others in the search space wingrtles
are taken into consideration. The set of all these Pareto-optimal solutions icaked
the Pareto-optimal Set.

To model the general MRP, we denote a communication netgaldireced graph
G = (V, E) with |V] = n nodes and |E| = | links. The following notatiare used in the
rest of the paper:

(i ,j) e E: the link from node i to node |, icjV.

c;eR’: the cost of link (i ,j).

djeR": the delay of link (i ,j).

z;eR": the capacity of link (i ,j), measured in Mbps.

t;eR": the current traffic of link (i ,j), measured in Mbps.

se V: the source node of a multicast group.

Rc V —{s}: the set of destinations of a multicast group.

rq€R: the destinations in a multicast group.

|R|: the cardinality of R, i.e. the number of destinations, alsedmibup size.

#<R": the traffic demand (bandwidth requirement) of a multicast request,
measured in Mbps.

T(s, R} the multicast tree with the source node s spanning all destisaiR.

pr(s, 1) c T(s, R} the path connecting the source s and a destinadRin the
multicast tree T.

d(pr(s, 1y): the delay of pathfs, ry), given by d(p(s, Iy) = Y d, . reeR

(iv e pr (sirg)

Based on the above definitions, a multi-objective MiaRthen be formulated as a multi-
objective optimisation problem. In this paper, we consider the multi-objectRi@ With

more objectives than those defined in our previous work (Xu and Qu 2011) and in
(Crichigno and Baran 2004a). The problem is to find a multicast tree whiieising

the values of the following five objectives:

The cost of the multicast &e (2)
CM=g¢- 3 ¢,
(i,j)eT
The maxinal endto-end delay of the multicast tree: 3)
DM(T) = Max{d(pr(s, 1))}, ra € R
The maxinal link utilisation: (4)

o(T) = Max%M}, (i,))eT

z
i



The average delay of the multicast tree:

DA = Ly 4 (Pr(s, 1) (5)
IR
Delay variation of the multicast tree: (6)

DV(T) = Max{d(pr(s, )} — Min{d(pr(s, D)}, ra, fj R

Objective (2) aims to minimise the cost occurred as the multicast treaipiexcertain
required bandwidth on links in the network. Objective (3) minimisesridveémal delay
time of sending the data via the multicast tree so that they arridestihations within a
shortest bounded time. Objective (4) tries to minimise the maximal linkatitdn, i.e.
traffic demand over the available bandwidth on the links. Objective (5) minimises the
average delay time of sending the data so they arrive all |R| destinatitessinottest
average time. Objective (6) minisas the delay variation of the multicast tree, which is
defined as the difference between the maximum and minimum delays amongpalihthe
delays from the source @l destinations. Note that objective (3) concerns the maximal
delay within the multicast tree, while objectives (5) and (6) minirtiseaverage delay
and the delay variation, respectively, thus concerning the delay to all destinatibes i
network. Thee five objectives have some correlations. For example, the delay-related
objectives 2), 4) and 5) (Eq.3, Eq.5 and Eq.6) which are dependent on the delays from the
source to destinations in the tree are strongly correlated. The cost of the multicast tree, i
Objective 1) is conflicting with these delay-related objective 2),n8) B), since the
decrease of the tree cost normally brings the increment of delays. The lin&tiotil
seems conflicting with the tree cost and the delay-related objectives, sincerdeaseexf

the link utilization causes the increase of the cost and delays. As indicatéu by
literature, these objectives represent the most common requirements in comonglicat

It remains interesting future work to formulate a wider range abwarobjectives based

on the above defined problem for different applications with specific requirements.

In communication networks, the total bandwidth of datagrams on a link must not
exceed the limited bandwidth available. Hence, the total traffic on link (i, j), i.e. the traff
demands of a multicast request plus the current traffisstsubject to the link capacity: z

Pp+1;<z,V(j) e T(s,R) (7)

Due to the complex real world constraints in multi-objective MRPs, thelsspace of

such problems becomes highly restricted and unpredictable (Xu and Qu 2012). This
demands more efficient and effective optimisation techniques to traverseritte seece

of such problems with many local optimal solutions and disconnected regions bfefeasi
solutions.

3. The Simulated Annealing Based Multi-objective Genetic
Local Search (MOSAGLS) Algorithm

The proposed multi-objective simulated annealing based genetic local search
(MOSAGLS) evolves by using simulated annealing strategies within the genetic
evolutionary process concerning non-dominated solutions with regard to the five
objectives defined. Figure 1 shows the flowchart of our proposed MOSAGLS algorithm,
details presented in the following subsections.

In MOSAGLS, the initial population of multicast trees is randomly generatadind
the evolution, parent solutions are chosen to produce child trees by using the defined
crossover and mutation operatofslocal search is then applied to the generated child
tree to produce a new improved tree. An external solutioN38ts maintained to record
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the non-dominated solutions obtained during the evolution. The MOSAGLS stops after
certain computational time, or the temperature in the SA drops to the final temperature.
The NDS after the evolution is finished is output as the final results. More detdtite
genetic local search algorithm are given in Section 3.2.

Intialisation
Generate an initial population P;
Form NDS (non-dominated solution set) from
Set the maximal number of generations Maxg
g = 0; /lthe index of generation;

N
:m
V

Set parametersfor SA
tmaxthe initial temperature;t, the final temperature;
tsepthe temperature decrementthte threshold temperature
Set the current temperature tay

M N
Y
Genetic local search procedure
Selection of parents
SA based adaptive mutation;
Crossover;
Local search;
SA based updating of parents;
Update NDS and calculate fitness of solutions

v

SA based competitio|

— v "

SA based searchYdirection tuni
Temperatu+re decrement]
t=t—tyep <
SA based seatch direction tuni
g :+g +1 <
Retu¢rn DS |

Figure 1. The flowchart of the proposed MOSAGLS algorithm

The proposed MOSAGLS evolves by using the SA strategies to adaptively set the
mutation rate, to guide the search directions and to make decision of solgtptaace
A temperature is defined and decreased through generations. Firstly, after crossover,
mutation is carried out based on an adaptive rate according to both the current
temperature and the fithess of the offspring and current population. Seceadly,
solution in the population is associated with a random weight vectos. vidator,
together with the temperature, takes part in the solution acceptance auhitige of
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search directions. That is, the ngwenerated trees replace the selected parent based on a
probability calculated using the weight vector and the current temperature. théhen
temperature is decreased to below a thresholdyéght vector is modified to tune the
search directions. More details of the SA strategies are given in Section 3.3.

3.1 The representation of the Multicast Tree

In the proposed MOSAGLS algorithm, we adopt the encoding method in Fabregat et al.
(2005) to represent the solutions (multicast gyder MRPs in both the genetic local
search andSA process. In this simple yet effective representation, a multicast tree is
represented by an ordered set of |R| paths from the source node s to each degtiRation r
IR| is the group size. That is, each solution contaihsojRponents {g @, ..., Or}:

where grepresents a path between the source sade the d-th destination nodg d =

L ... IR

Given the benchmark NSIF (National Science Foundation) network (Culé0al) in
Figure 2, an example multicast tree and its representation in MOSAGLS are shown i
Figure 3. The NSF networls a major part of theaty 19909 Internet backbohe for
mainly academic uses. It has been tested as a benchmark problem in the existing literature
by a number of researchers (Crichigno and Baran 2004a; Crichigno and BaranX2004b;
and Qu 2011).

Figure 2 The NSF (National Science Foundation) network. On each link; dnd } denote the
delay, the cost and the current traffic. The traffic demanr@.2Mbps, the capacity=z1.5Mbps.
The source node s=5, the destinations R={0,4,9,10,13}.

The Solution Encoding
Gene| Path

O1 5-4-2-0

9 5-4

O3 5-4-10-11-9

Oa 5-4-10

Os 5-4-10-12-13

(a) A multicast tree for the NSF network in Figure - (b) The representation of the solution in (

Figure 3. An example multicast tree and its representation for the NSF networkiia Eig
3.2 The Genetic Local Search in MOSAGLS

Genetic algorithms represent one of the mostly investigated evolutionary hatigoiiit
the literature. It simulates the evolutionary process of the nature to evolve &
population of individuals by using genetic operators (Goldberg 1989). Betteidimnals
of higher fitness have more chance to evolve individuals which inherit goddinigui
blocks.


http://en.wikipedia.org/wiki/National_Science_Foundation
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In the evolutionary process of our proposed MOSAGLS, the initial population consists
of a fixed number of random multicast trees. They are generated by stastimghie
source node and randomly selecting the next connected node until all the destination
nodes have been added to the tree. In each generation, crossover and mutation operations
are carried out on two randomly sebstiparents from the current populatiof.local
search is used to further explore better neighboring solutions of the generatachtree
dominated selNDS are maintained during the evolution. It stores the newly generated tree
if it is not dominated by any tree in the curréid?S and removes the trees which are
dominated by the generated tree.

For the miti-objective MRPs being concerned, the strength Pareto based evaluation in
(Zitzler and Thiele 1999) is adopted in the genetic algorithm in MOSAGLS talatdc
the fitness of individuals. It is used to maintain and updatélfeset as well as used in
the selection, crossover and mutation operations.

3.2.1 The strength Pareto based evaluation

The value of the five objective functions (2)-(6) defined in Section 2 is calcutated
each individual. Based on these values, the fithess of each individual is evaluated by
using the evaluation method of the Strength Pareto EA in (Zitzler and Thiele 4999)
follows:

1) For each non-dominated solutiore DS, a strength @[0,1] is calculated. It is the
proportion of the number of solutiong Which are dominated by; To the population
size, i.e. Tis dominated by Tdenoted by T» Tj:

g =

leTjeP/\T‘DTi‘ /' |P] (7)

2) For each individualTin the population, the strengtheffl, 1+NDS] is calculated by
summing the strength oflanon-dominated solutionsdNDS, where T » Tj, plus one:

a,=1+ Yq (8)

T.eNDS T>T,

3) Finally, the fitness of each individuaj i the population F(J is calculated as the
inverse of its strength:q

F) =9 )

The strength Pareto based evaluation in our algorithm is similaataestused in MOEA
algorithms in (Crichigno and Baran 2004a; Crichigno and Baran 2004b). lndHiswe

focus on the investigation of genetic local search with SA strategies, so thle sinal
effective strength Pareto based evaluation method in the literature has been atopted. |
also enables us to carry out fair comparisons to evaluate the performance of ourdpropose
hybrid algorithm against the MOEA algorithms in the experiments in Section 4.

3.2.2 The selection method

We employ the binary tournament selection method, also used in the MOEA algarithm i
(Crichigno and Baran 2004a), to select parents. Each time two individuals from the
population are randomly selected. The individual vaithigher fitness value defined by

the strength Pareto based evaluation in (9) wins the tournament and is selagbedesis

Two parents are chosen by applying the tournament selection twice.



3.2.3 The crossover operation

A two-point crossover operator, with a crossover rate of 1, is afpliegich selected pair

of parents. Based on the representation of the ordered set of paths in Section 3.1, the paths
between two randomly generated points in one parent are selected and replaced by the
corresponding paths in the other parent. Note that some selected paths mapeshare t
same links with some remaining paths. Such links will not be removed to ensure the tree
is connected. To avoid loops in generating the new multicast tree, the selectedllpath

be replaced by adding the new path from its destination node until it connects to an on-
tree node.

An example of the crossover operation is shown in Figure 4, where paits-g-10-
12-8-7-13-9) between the selected two crossover points in parent 1 is repldlcedbw
corresponding path (5-6-1-0-3-10-11-9) gfig parent 2. To avoid loops in the generated
multicast tree, the new path (5-6-1-0-3-10-11-9) is added to the trearbggstrom the
destination node 9, and adding only the path 9-11-10 until it connects to the on-tree node
10. A new tree is then generated as shown in Figuje 4(c

The simple representation of multicast trees (see Section 3.1) fagildateasy
implementation of crossover operations. By adding the selected path(s) in pamnt 2 f
the destination node, the newly generated offspring is guaranteed to be feashse (if
link capacity constraint (7) is satisfied). Note that whike=g(5-4-10-12-8-7-13-9) in
parent 1 is being replaced, the links along the path (5-4-10-12-8-7HlLB)rstins in the
multicast tree as they also appear dningthe original tree of parent 1. In multicast trees,
some paths share common links, especially those near the root of the traksieedr
the source node appear multiple times in the solution. This is due to the ofathee
multicast tree that all paths must pass a subset of ksl from the source node, where
ds is the degree of the source node. These (partial) paths in the tree are adsgiteidy
through the evolution process of MOSAGLS if they present to be good building mocks
the individuals.

Parent 1
Gene| Path
'R 5-4-10-3-1-0
92 5-4
Crossover points% O3 5-4-10-12-8-7-13-9
—7 g, | 5-410
Os 5-4-10-12-8-7-13

(a) Parent Jlobjective values: C(T¥ 11.2,DM(T) = 60, «(T) = 0.67,DA(T) = 38.4 DV(T) =53

Parent 2
Gene| Path
o} 5-6-1-0

> O 5-4

Crossover points O3 5-6-1-0-3-10-11-9
—7 g9, | 56-1-0-310

Os 5-6-1-0-2-713

(b) Parent 2objective values: C(T) = 9.OM(T) = 75,T) = 0.73,DA(T) =49, DV(T) = 68
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Individual
Gene| Path
o1 5-410-3-1-0
92 5-4
O3 5-4-10-11-9
Os 5-4-10
s 5-4-10-12-8-7-13

(c) New offspring tree after the crossaovainjective values:
C(T) = 11.4,DM(T) = 55, o(T) = 0.6,DA(T) = 33.4 DV(T) = 48
Figure 4. An example of the two-point crossover operation

3.2.4 The mutation operation

In our MOSAGLS algorithm, mutation is carried out with an adaptive probalmlity
using both the evolutionary information and SA strategies. The adaptive pitgbiabil
calculated based on not only the fitness of the individual, but also the current temperature.
More details of the SA strategies are given in Section 3.3.1.

ID |Least cost pathg ID |Least delay pathg ID |Least usd paths
1 |5-6-1-0 1 [5-4-2-0 1 |5-4-10-3-0

2 |5-4-2-0 2 |5-6-1-0 2 |5-6-1-0

3 |5-6-9411-10-3-0 | 3 |5-4-10-3-0 3 |5-4-2-0

4 |5-6-1-3-0 4 |5-4-2-7-8-9-6-1-0| 4 |5-4-10-11-9-6-1-0
5 |5-4-10-3-0 5 |5-6-9-8-7-2-0 5 |5-4-10-3-1-0

(a) Routing table of destination node=r0 for the multicast tree in Figure 4(c)

Solution
Gene| Path
o 5-4-10-11-9-6-1-0
92 5-4
O3 5-4-10-11-9
O 5-4-10
Os 5-4-10-12-8-7-13

(b) The multicast tree after mutation to the tree in Figure 4(c).
Objective values: C(T) = 11.BM(T) = 71,a(T) = 0.6,DA(T) = 36.6 DV(T) = 64

Figure 5. An example of the mutation operation

For a selected individual, the mutation operation randomly repéguaih by using an
alternative path stored in a routing table, which is the same as that is devised
(Crichigno and Baran 2004a). The routing table for the destinafiR of the selected
path g is consists of m least cost, m least delay and m least used paths {llsatibat
path) generated by using the k-shortest path algorithm (Eppstein 1998). As/ebjédt
(3) and (6) defined in Section 2 are all related to the delay objective, theytsbazrame
least delay paths in the routing table. A new randomly selected p§tath, ..., pathy}
in the routing table then replaces the original patinam the sourc¢o the destinationgt

An fillustration of the mutation operation is given in Figure 5 for dfispring
generated in Figure 4(c). Figure 5(a) presents the routing table of destinatio, r
listing 5 paths for each objective, i.e. m =5 in this example. If a randdn{p4dt10-11-
9-6-1-0) is selected from the routing table, a new solution is generaléglire 5(b) by
replacing the original path (5-4-10-3-1-0) qfig Figure 4(c).

3.2.5 The local search in MOSAGLS

Instead of reproducing the offspring directly to the next generation, a deeath is
applied to further enhance the offspring, simulating the maturing phenomenoa in th
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nature. To apply the local search, each solution (a multicast tree)lisriystesented by

a binary array of |V| = n bits, each corresponding to a node in the muttézadEach bit

is assigned a value 1 if the corresponding node is on the tree; 0 otherwise. This
representation has been widely used in the literature and shows to be effectoaalfor |
search and genetic operations for MRPs (Skorin-Kapov and Kos 2003; Skorin-Kapov and
Kos 2006).

In our MOSAGLS, the neighborhood operator of the local search is based on the well-
known Primis minimum spanning tree algorithfBetseka and Gallager 1992) which
finds a tree with the minimal total weights of the links spanaisgbset of nodes in the
graph. The local search repeatedly flpdit in the binary array which represents a
solution until a new better multicast tree is found or a fixed maximunbeuof nodes
have been flipped. This local search method can greatly improve the solutions with regard
to the five objectives by using the strength Pareto based evaluation &) th local
search is applied to the above solution in Figure B(bgw solution is shown in Figure 6.

Solution
Gene| Path
g 5-6-9-11-10-3-0
9 5-4
Oa 5-6-9
[N 5-6-9-11-10
Os 5-6-9-812-13

Figure 6 An example solution after the local search on the solution in Figure@ggctive
values: C(T) = 8.8DM(T) = 53,T) = 0.6,DA(T) =27, DV(T) = 46

This node-based local search has been applied in our previous@oet &l. 2009).
The selection of the neighborhood operator is based on our previous observatiba that
node-based neighborhood operator is easy to implement and effective for searching better
neighborhood solutions. In this paper, we just investigate the this simpkffgetive
local search operator. More efficient and effective local search methods and the thoice o
starting solutions for local search (Ishibuchi et al. 2010) may be investigated to reduce the
computational time of the hybrid algorithm in our future work.

Based on the procedure described above, Figure 7 presents the pseudo-code of the
hybrid MOSAGLS. In order to improve the performance of MOSAGLS, as shown in
Figure 7, severaBA strategies have been applied. We illustrate these strategies in the
following subsections.
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MOSAGLS((G = (V, E) s, R,k

{ Il G: the network topology; she source node;:fhe destination set; k: number of objectives
Generate the random initial populatiBrwith T, ..., Tjpymulticast trees;
For Ty, ..., Tjp, produce |Pdistinct random weight vectord,..., P! each witha uniform spread;
Selectnonrdominated solutions with respect to multiple objectives in the populaticio Bbrm  NDS;
Calculate the fitness value of all the solutions in NDS and P by usrgiringth Pareto based evalua
in Eq. (9);

g=0;
while (g < Maxgen) do {
Current temperature t T4
whilet > t, do{
Randomly select a pair of parent solutionard T from P;
Crossover operation over parentaifd T;
Mutation with adaptive probability,jto the new solution from crossovéfsimulated annealing
strategy
Generate T by applying local search to the new solution after mutation; // $e8th5
if T;” is not dominated by parentsof T; then
Update NDS;
Replace a selected parepthy T, with the probability P(Z T;’, A, t); // simulated annealing
strategy
Re-calculate the fitness for all solutions in NDS and P
Find the closest solution& P of T;’
if (Tyis worse tharT;’) then // simulated annealing strategy

T=T; /I replace the closest membginTP
t=1t-tep /l temperature decrement
if (t<t)then

TuningSearchDirectiorg // simulated annealing strategy: see Figure 8

} end of whileloop
gt++;

}
return NDS;
}
Notes: Maxgen is the maximm of generation;t./tmin: the starting/final temperatureg; the temperature
threshold for tuning the weight vectartye; the temperature decrement;tRe current population; ND&he

non-dominated solution set
IBUIC L TTTT pDCUUU'bUUC UT U VIO OAUOLO GIHUIILIIIII

3.3 Simulated Annealing Strategies in MOSAGLS

Simulated annealing (Kirkpatrick et al. 1988 one of the mostly studied probabilistic
meta-heuristics for global optisation. The basic ide& inspired from the physical
annealing process where the heated material is gradually cooled to redluce thk nig¢fects a
form large sizd crystdisBased on this physical process, during the searchSthe
algorithm accepts non-improved state/solution with a probability depending on the
temperature in the cooling schedule at that time. As a résslable to escape from local
optima by intelligenyf accepting worse solutions and effeclyvexplore the search space

of complex multi-objective optimeation problems (Czyzzak and Jaszkiewicz 1998; Li
and Landa-Silva 2008).

In our MOSAGLS,SA strategies have been adopted to 1) set the adaptive mutation
rate, 2) make decision of the acceptance of the new offspring in the genatisdarch,
and 3) guide the search directions at the later stage of the evolution.

3.3.1 Simulated annealing based adaptive mutation probability

In MOSAGLS, mutation is always applied to an offspring if it is better thamikeage
of the current population (see more details of the mutation operatioectiors 3.2.4)

For a worse new offspring, mutation is applied with an adaptive probahilinaged on
not only the current temperature but also the difference betweenrtassfiof the new
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offspring and the average fitness of the current population. The adaptive omutati
probability p, is defined as follows:

1
Pn= | 7 T (10)

~IFaug = Frewl/t

le F_ <F

where the average fithess of the current populatigp &hd the fitness of th
new offspring K. are calculated by using the strength Pareto based eval
function defined in (9);:tthe current temperature.

On the one hand, better offspring near the Pareto front will be given lulghece to be
evolved by the mutation operation, making the evolution more effective by investing
computational time on more promising offspring. On the other hand, the mutagds rat
higher if the current temperature t is higher. This means at the early stage of thiemrvol
worse offspring still has the chance to be mutated, giving the whole population the chance
to explore more areas of the search space. At the later stage when thennmatat
decreases to a small value along with the temperature decrement, worse sahations
rarely evolved to encourage the convergence of the algorithm.

3.3.2 Simulated annealing based Acceptance Probability

To assist the decision making of accepting a new generated offspring, and to tune the
search directions in the later stage (see Section 388gighttd sum of a convex
combination of different objectives is used. A Pareto-optimal solution &nelot if it is

the unique global minimum of the following scalar opsiation problem:

Minimise ¢"9(x, ) = v * 4 fi(¥), xe X (11)

where 1 is a weight vectorg; €[0,1], i =1, ..., k, k is the number c
objectives andzk:1j,l = 1; each/; is associated withan objective

function f(x).

Equation (11) is called the weighted sciaiag function, one of the mostly used
scalaising functions in multi-objective algorithms in the literature (see morédlsiath
other functions in Miettinen 1999). In our MOSAGLS, the probability of a newisalut
x’ to replace a solution x is adopted based on the weightedisiogldunction ¢ in

eq.(1):

1 if Ag(x,x',2)<0
-Ag(x,x"4)

P(xx’, A, 1) = (12)

t
[e otherwise

where t > 0 is the current temperatukg(x, x’, 4) = g"9(x’, 1) - g"9(x,
A) is the difference between x antby using the weighted scalarisi
function in (11).

In the initialisation of our MOSAGLS algorithm, a normalised weight vectois
randomly generated for each solution At each generatigna new solutionT;’ is
generated after the local search upon the offspring produced from the chosen pair of
parent solutions ;TandT;. The parent of lower qualitys then replaced by the niw
generated tree; Thased on the weight vector and the current temperature, i.e. parent with
ahigher probability by comparing P(T;’, A, t)and P(T, T, 2, t) in eq.(12) is replaced
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3.3.3 Simulated Annealing based Competition and Search Direction
Tuning

Simulated annealing strategies have shown to be effective to tune search dirgction
solving multi-objective traveling salesman problems (Li and Landa-Silva 2008un€o t

the search directions in our proposed MOSAGLS, two similar adaptitategies to (Li

and Landa-Silva 2008) have been adopted. They are designed to diversify the search
directions and avoid solutions being trapped in local optima during the evolytionar
process.

1) The first strategy is defined concerning the competition between ssiigi#ons in
the current population. Euclidean distance, which is widely used in the multi-objective
optimisation literature, has been used in MOSAGLS to measure the distancenbetwee
two solutions. This is calculated upon the differences between all the objettives
in the two solutions for the problem. After a new solutipnisTgenerated, the closest
solution Tmeasured by the Euclidean distance in the current population is cszsen
neighbor of T. MOSAGLS then replaces; With T;" if T, is worse than T by
comparing their weighted scailsing function values using eq.(11), i.e. ffYT,’, )
<g(T, A).

2) The second strategy aims to tune the search direction when the search is getting
closer to the Pareto front at the later stage of the evoldftosa strategy is similar to
that of multi-objectiveSA algorithms in (Czyzzak and Jaszkiewicz 1988d (Li and
Landa-Silva 2008). It adaptively taathe weight vector according to the closest non-
dominated neighboring solution in the current population when the current
temperature is decreased to below a threshold. The pseudo-code of the search
direction tuning is presented in Figure 8.

TuningSear chDir ections (t)
{ Il t: current temperatures the constant for tuning the search direction
foreach T,e P do{
Find the closest non-dominated solutighdf T; in the current population
by using the Euclidean distance uptrandA
foreach obje {1, ..., k} do// k: number of objectives {
if foi(Ti") < foni(Ti) then Aoy =ed'on;
else Aoy = Loy 1145
} end of foreach
NormaliseZ' by setting?'o,;= i‘objlzk A }

}

Figure 8 The pseudo-code of search directions tuning by using simulatedlarg strategies

The latter two strategies in Section 3.3.2 and Section 3.3.3 on the solution acceptance and
the tuning of search directions have also been investigated in the simulatedngnneali
based multi-objective algorithm named EMOSA in (Xu and Qu 2011) for sovling the
multi-objective MRPs with only four objectives (i.e. EQq.2, Ed&§.4 and EQ.5, except

Eq.6) which has shown effective to found better non-dominated solutions than other
multi-objective evolutionary algorithms (Crichigno and Baran 2004a; 2004bhen t
literature. Based on our previous work, these two SA based strategies have been adopted
to in our proposed MOSAGLS hybridised with the local search operator as the post
improvement optimisation strategy for solving the multi-objective MRP#$ wibre
objectives in this paper.
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4 Performance Evaluation

4.1 Simulation Environment and Test Instances

We have carried out a large amount simulations to test our algorithms on both the
benchmark and random networks with different objectives. Two variants of otir mul
objective multicast routing algorithms have been evaluated in the following experiments:

1) MOSAGA, the proposed algorithm without local search, and
2) MOSAGLS, the proposed algorithm with local search

Both of these algorithms are new in solving multi-objective MRPs fisstly evaluate
different components of these algorithms on a set of random networks with two
objectives (cost and delay, see Section 2). Based on the observations obtaitiessh w
compare our algorithms with the existing algorithms in the literature orbemchmark
networks with different number of objectives. Finally, we demonstrate the effieetis

and efficiency of our algorithms upon a set of random networks with all the five
objectives defined in Section 2.

All simulations have been run on a Windows XP computer with PVI 3.4GHZ, 1G
RAM, and within a multicast routing simulator developed based on Salajaaerator
(Salama et al. 1997). The multicast routing simulator generates random network
topologies by using the Waxmangraph generation algorithm (Waxman 1988). The
nodes of the network are located within a simulated rectangle of size: 4000knd.

The Euclidean metric is used to determine the distanggbgtween pairs of nodes i and
j- Links connect nodes (u, v), with a probability

P(i, j) =R &/ 4, R < (0, 1] (13)

where L is the maximum distance between two nodesid R are parameters which
can be set to different values to create desired characteristicsnetttak. Therefore, a
large value to 3 creates a high average degree to nodes, and a small watueates
long connections between nodes. More details of the simulator can be found in (Salama et
al. 1997) and (Qu et al. 2009).

In all our simulations, we set = 0.25 and 3 = 0.40 to generate random network
topologies. Within the network, the link cost is assigned a random value between
(0,100] to define the current total bandwidth reserved on the link. The link dgléy d
defined as the propagation delay depending on the length of the link. The link capacity z
is set as 1.5Mbps. The current traffjds randomly loaded around 50% of its total link
capacity, which is set the samsthat in (Diego and Baran 2005). To encourage scientific
comparisons, the detailed information of all the problem instances and the experimental
results has been provided at http://www.cs.nott.ac.uk/~rxg/benchmarks.htm.

4.2 Parameter Settings

In the evolutionary process of MOSAGA, the population size is set to 50, the number of
generations is set to 500, and the crossover rate is set to 1. These are thetlsaseeias

the other two evolutionary algorithms MOEA1 (Crichigno and Baran 2004a) and
MOEAZ2 (Crichigno and Baran 2004b) for multi-objective MRPs. Instead of adirngd
mutation rate 0.3n MOEA1 and MOEA2, we employ an adaptive mutation rate in
MOSAGA. Based on initial tests, we set m =t®5generate the routing table ok B
alternative paths in the mutation operation. In $i#eprocess of our MOSAGA, we set

the initial temperature.i,= 50, the final temperaturg;t=5, the temperature decrement
tsep= 5, @and the temperature threshald 25. The parameters of ti8A process are kept

the same as those in tIf®A based multi-objective algorithm for solving traveling
salesman problems (Li and Landa-Silva 2008). For simplicity and fair comparisons, we
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keep the same parameter settings for the proposed algorithms on all the tested instances in
this paper unless otherwise stated.

All the parameter values have been also determined after a set of tesid toefi
balance between the quality of solutions and the running time. For example, toaobtain
proper range of values for the population size and the starting temperateref anitial
tests have been carried on the NSF network shown in Figure 2 to compare the
performance of MOSAGA with different parameter settings. The optimal dP&rent
(PP of the NSF benchmark problem that composes of 16 solutions has been found by an
exhaustive search method in (Crichigno and Baran 2004b), where four objé2}iu&s,

(4) and (5) have been considered in the algorithms thws considered the same four
objectives in our MOSAGA algorithms in this group of tests. Table 2 piedbe
maximum, minimum and average number of non-dominated solutions found by each
variantof MOSAGA in 50 runs. The setting of population size pop = 50 and the starting
temperature k.= 50 provides the best solutions and requires less computing time, is thus
selected in our algorithms.

Table2. Comparison of MOSAGA with different parameter settings for soltlegNSF network
in Figure 2 |NDSJ: the number of non-dominated solutions; Running time = @hdedn each run.

pop | tmax | Max [NDS| | Min |NDS| | Average [NDS|
50 | 50 16 16 16
50 100 16 13 14
100 50 16 12 15
100 | 100 16 13 14

4.3 Results on Random Networks with Two Objectives

In order to visually analyse the impact 8A strategiesthe adaptive mutation and the
local search on the performance of the proposed algorithegary out a series of
experiments on random networks with two objectives, namely the cost and the delay as
defined in Section 2. Four random networks have been generated with different network
sizes(]V| =50 and |V] =100) and group sizes (humber of destination nodes |R| = R0%*|V
and |R| = 30%*|N.

4.3.1 The Impact of Simulated Annealing Strategies

In the first group of experiments, we compare MOSAGA with two evolutionary
algorithms, MOEA1 (Crichigno and Baran 2004a) and MOEAZ2 (Crichigno and Baran
2004b), to identify the impact &A strategies to our multi-objective genetic local search

For a fair comparison, the same parameter setting in MOEA1 and MOEA2 has been used
in the evolution process in our MOSAGA. The non-dominated solutions found by the
three algorithms after 50 runs are shown in Figure 9, with their average ocogyniiue

in Table 3.

The experimera results clearly show that the MOSAGA algorithm found a set of better
non-dominated solution compared with those from the two MOEA algorithms on 3 out of
4 problems, i.e. Figure 9(a), (c) and (d). For the problem in Figure 9(b), MOSAGA is able
to find better non-dominated solutions except those three solutions found by MOEA2.
However, for all other three problems, MOEA2 has performed the worst. Wittdregar
the computing time, MOSAGA requires the least computing time. This demonstrates tha
the SA strategies in MOSAGA can guide the search direction of genetic algatat find

better solutions in less computing time in comparison with the MOEA algorithms.
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Figure 9. The non-dominated solutions found by MOSAGA, MOEAIMGIEA2 on random
networks with two objectives in 50 runs

Table 3. Average computing time of MOSAGA, MOEA1 and MOEA2 on oamdetworks with
two objectives.

Network | Group Computing time (sec)
Size Size MOSAGA MOEA1 MOEA2
50 10 7.068 25.211 25.544
50 15 6.208 34.901 36.703
100 20 13.342 88.411 96.489
100 30 18.338 126.517 132.015

4.3.2 The Impact of the Adaptive Mutation

In the second group of experiments, we test the effect of the adaptive mutation by
comparing it with four fixed mutation rates, i.e, 2 0.3, 0.6, 0.9, 1 in MOSAGA. The
non-dominated solutions found by MOSAGA with different mutation rates after 50 runs
are shown in Figure 10. In general, MOSAGA with the adaptive mutation rate has the
best overall performance among all the other variants with fixed mutatie aditeough

the Pareto fronts found by variants of the algorithm interweaving at ceddirof the

front for some networks, i.e. Figure 10(b) and Figure 1Qh the fixed mutation rate,
MOSAGA occasionally finds several better non-dominated solutions, but failedaio ob

the majority of solutions at the Pareto front found by MOSAGA with adaptiutation

rate for all four networks. The adaptive mutation rate makes the seareheffifiective
based on both the temperature and the fithess of the new solution and the current
population.
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Figure10. The non-dominated solutions found by MOSAGA with different natates on
random networks with two objectives in 50 runs.

4.3.3 The Impact of the Local Search

In the third group of experiments, wempare the MOSAGA and MOSAGLS algorithms
to demonstrate the effect of the local search in our proposed algorithms. Theebkocal
in MOSAGLS stops after a number of nodes (set as 10 here) has been flipped.

The non-dominated solutions found by both algorithms for the four random networks
in 50 runs are shown in Figure 11, clearly showing the improvement made by the local
search in MOSAGLS. For the small network in Figure 11(a), MOSAGLS found four non-
dominated solutions, while MOSAGA found only two non-dominated solutions. For the
same networks with larger group size and for networks of large size, itisustihat
MOSAGLA outperforms MOSAGA by finding much better non-dominated solutions.
This demonstrates the efficiency of the local search in our proposed MOSAGLS
algorithm. Please note the non-dominated solutions obtained by MOSAGA in Figure 11
are different from the results of MOSAGA in Figure 10 due to the independgestof
experiments on the random networks.

Table 4 presents the average computing time of MOSAGA and MOSAGLS on the
four random networks, showing (not surprisingly) that MOSAGLS finds bstletions
at the expenses of longer computing time compared with the MOSAGA algoritheal In
world applications, the balance of solution quality and the computational time $iwould
concerned while designing the local search in MOSAGLS. This demonstrates that our
proposed local search is able to improve the search results of MOSAGLS while
consuming longer computational time.
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4.4 Results on Benchmark and Random Problems with Different
Objectives

4.4.1 Results on the NSF Network with Four Objectives

Based on the above observationg as@mpare the performance of the MOSAGLS and
MOSAGA algorithms on the benchmark NSF network with that of MOEA algorithms.
As mentioned in Section 4.2, the optimal Pareto front of 16 solutions for the NSF
problem has been found in (Crichigno and Baran 2004b), concerning the fourvelsjecti
(2), (3), (4) and (5) defined in Section 2. We thus consider the same four objectives in this
group of experiments.

The adaptive mutation rate has been applied in MOSAGLS and MOSAGA. To ensure
a fair comparison between algorithms, we have re-implemented the MOEA algorithms,
and compared the results obtained by the four algorithms within 60 seconds instead of
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defining a fixed number of generations. Table 5 presents the maximum, minimum and
average number of non-dominated solutions foundamhalgorithm in 50 runs.

Table 5 The number of non-dominated solutions found by different algostlon the NSF
network in Figure 2 with four objective€omputing time = 60 seconds.

Algorithms Max |[NDS| | Min [INDS| | Average |NDS|

MOSAGLS 16 16 16

MOSAGA 16 16 16
MOEA1 16 14 15
MOEA2 16 10 15

For this small NSF problem, our proposed MOSI&&and MOSAGA algorithms
outperform the two MOEA algorithms, i.e. always find all 16 solutions in the optimal
Pareto front in 50 runs. This, together with our above observations, indicatesAthat
based MOSAGA and MOSAGLS with adaptive mutation rate are more effective than the
two conventional MOEA algorithms for multi-objective MRPs.

4.4.2. Results on the NTT network with Five Objectives

We also test our algorithms on the NTT (Nippon Telephone Telegraph) netweidure

12. Two different multicast grogphave been tested, as shown in Table 6. We set the
current traffic §{ of each link as randomly loaded with around 50% of its total link
capacity, which is the same as that in (Diego and Baran)2AD%lgorithms have been
evaluated with respect to all the five objectives defined in Section 2.
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Figure 12 The Nippon Telephone Telegraph (NTT) network of Japan with 55 nodie$42 links.
Costs are shown on each link.

Table 6 Two different multicast groups used for the experiments on the NWoretn Figure 12.

Multicast group | Source | Destination Set R R|

groupl (small) 5 {0,1,8,10,22,32,38,43,53} 9
group2 (large) 4 {0,1,3,5,6,9,10,11,12,17,19,21,22,23,25,33,34,33446,47,52,54} = 24

As the optimal Pareto front for the NTT network with all the five objestigefined
in Section 2 is not known, we use a six-step procedure devised in (Diego and Bajan 2005
to obtain an approximation of the Pareto front for each problem. Theegipsicedure
in (Diego and Baran 2005) is presented as follows:

1) Each of the algorithms testedrun 10 times.

2) For each algorithm, 10 sets of nhon-dominated solutigng,Y..., Y, are obtained
one from each run.
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3) For each algorithm, an aggregate collection of solutigms dbtained, i.e. Y= U v -

1

4) The non-dominated solutions in &fe stored for each algorithm, denoted hy Y
5) A set of solutiong” is obtained by combining allyy; i.e.Y’ = U Yaq

6) The non-dominated solutions ¥t are used as an approximatidrttee true optimal
Pareto solution set, callegdyY

Based on this approximation of the optimal Pareto solutionsgginYorder to have an
insight of the quality of solutions obtained by each algorithm with regard-gothé
following notations are used:

- ¢ Ypge the average number of solutions that arepipifdund by each algorithim all
runs;

- Ype~ : the average number of solutions that are dominategbfpind by each
algorithmin all runs;

- |y |: the average number of any solutions found by each algdrniththruns;

- %YpE the average percentage of solutionsdafund by each algorithim all runs,
i.e. e Ype/ IYPFI'

(1) Comparisons of MOSAGLS with MOSAGA on the NTT network

Firstly, to investigate the effectiveness and efficiency of the local seaarator in our
proposed MOSAGLS, we compare MOSAGLS with MOSAGA in which no local search
is applied. Table 7 presents the total number non-dominated solutit¥ps aftained by
MOSAGA and MOSAGLS for the NTT networin Figure 12 with two different
multicast groups in Table 6y using the above six-step procedure. For a fair
comparison, the computational time for both algorithms for each run is 60 seconds.

Table 7 Based on the six-step procedure, the total number of non-dominaketioss Y%
obtained by MOSAGLS and MOSAGA for the NTT network with two efiéint multicast groups
with respect to all five objectives.

Comp_utatlonal 60 seconds each rur
Time

Multicast Goup group 1l | group 2
v, | 6 11

Table 8 Comparisons of MOSAGLS and MOSAGA for the NTT network with simall multicast
group 1. Computatiaal time for each run is 60 seconds. The best results are in bold.

Algorithms | eY.. | Y, - v, | | %v,.
MOSAGLS 3.86 6.1 9 64.33%
MOSAGA 3.02 7.52 10 50.33%

Table 9 Comparisons of MOSAGLS and MOSAGA for solving the NTT netwaith the large
multicast group 2. Computation time for each run is 60 secondshelteesults are in bold.

Algorithms | Y. | Y. - v, | | %y,
MOSAGLS 19 9.06 10.96 | 17.27%
MOSAGA 0.8 10.42 11.22 7.27%

Results in both Table 8 and Table 9 show that MOSAGLS found more non-
dominated solutions: Ype than that of MOSAGA, and thus gave a better approximation
to the Pareto Front. This becomes more obvious for the NTT network with the large
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group size (see group?2 in Table 6) in Table 9, where MOSAGLS found 17.27% of the
non-dominated solutions WM compared with 7.27% of solutions irpeYfound by
MOSAGA. Better experimental results obtained by MOSAGLS demonstrate that the
local search operator can improve the performance of MOSAGLS by finding mon-
dominated Pareto optimal solutions for solving the multi-objective MRP viith f
objectives.

(2) Comparisons of MOSAGLS with MOEAL and MOEA2 on the NTT network

Secondly, we compare MOSAGLS with other two multi-objective evolutionary
algorithms MOEA1 and MOEA2 on the NTT benchmark problem with five objectives
Each algorithm has been run 10 times on each instance.

Table 10 presents the total number non-dominated solutions: wb¥ined by the three
algorithmsfor the two NTT instances by using the six-step procedure. For a fair an
comprehensive comparison, all algorithms tested have been given the same computational
time, i.e. 160 seconds and 320 seconds, respectively, for each run.

Table 10. Based on the six-step procedure, the total humber of non-domindtéidrsoin Ypr
obtained by MOSAGLS, MOEAL1 and MOEA2 for the NTT network with wfferent multicast
groups with respect to all five objectives.

Running Time 160 seconds 320 seconds
Multicast Group | groupl group2 groupl | group2
| Yor | 44 16 42 17

Tablell. Results of different algorithms for solving the NTT network wittamulticast group
1in Table 6.

i Running Time = 160 seconds
Algorithms =
€ Ypr ‘ Ype - ‘ |y | ‘ % Yor Coverage| Yvosacls | Ymoear | Ymoeaz
MOSAGLS 4.1 14.6 18.7 9.32% | YwosacLs \ 0.57 0.8
MOEA1 14 25.7 27.1 3.18% YvoeaL 0.33 \ 0.32
MOEA2 1.8 14.1 15.9 4.09% Yvoea2 0.56 0.5 \
. Running Time = 320 seconds
Algorithms =
€ Yoe | Ypg>- ‘ [y | ‘ % Yor Coverage Ywvosacts | Ymoear | Ymoem
MOSAGLS 5 17.1 22.1 12.9% | YwmosacLs \ 0.57 0.82
MOEA1 4.8 18.6 234 11.4% YmoeaL 0.71 \ 0.96
MOEA2 1.9 13 14.9 4.75% Ymvoen2 0.57 0.49 \

Tablel2. Results of different algorithms for solving the NTT network viatge multicast group 2
in Table 6.

. Running Time = 160 seconds
Algorithms =
€ Ypr ‘ Ype- ‘ [y | ‘ % Yer Coverage| YwvosacLs ‘ Ymoear | Ymoea2
MOSAGLS | 7.3 11.2 185  45.63% | Yuosaois \ 1 1
MOEA1 0 17.8 17.8 0 YmoEAL 0 \ 0.64
MOEA2 0 10.9 10.9 0 Ymoe2 0 0 \
i Running Time = 320 seconds
Algorithms =
€ Ypr | Ypr~ ‘ Iy | ‘ % Yer Coverage| Ywosacls | Ymoear | Ymoea2
MOSAGLS 6.8 13.5 20.3 40% YMOSAGLS \ 0.95 1
MOEA1 0.1 16 16.1 0.59% YmoEAL 0.06 \ 1
MOEA2 0 121 121 0 Ymoer2 0 0 \

Table 11 and Table 12 present the results obtained for the NTT network with tw
different multicast groups. Both tables show that MOSAGLS found more nom-alth
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solutions e Ype than that of MOEA algorithmsA measurement used in (Zitzler and
Thiele 1999) is used here to calculate the coverage of the non-dominated ssdtition
obtained by each algorithm. This is represented by the ratio of the number of non-
dominated solutions obtained by each algorithm to that of another algoritines Tl

and 12 show that the non-dominated solutions found by MOSAGLS cover the majority of
the non-dominated solutions found by MOEA algorithms. This becomes more obvious
for the NTT network with larger group size, where MOSAGLS found alrathston-
dominated solutions, while the MOEA algorithms found just one or no solution that
belongs to MOSAGLS.

4.4.3 Results on Random Networks with Five Objectives

Finally, we test the effectiveness and efficiency of our algorithm upon @& sehdom
networks of different characteristics with respect to all fiveatives defined in Section
2. We generate 10 random graphs for each network size of |V] = 50 and |V]and.00,
with different group sizes (|R| = 20%*|V|] and |R| = 30%*|V]). Therefores #re in total
40 instances (10 for each of the four types of networks) tested.

We set the same running time, i.e. 320 seconds for all algorithms in each run. Table 13
presents the average number of non-dominated solution$) @btained from 10 runs of

the three algorithms on each of the four types of random networks by using-gtepsi
procedure in Section 4.4.2.

Table 13. The average number of non-dominated solutions on therraredworks

Network Size [V =50 [V] =100
Group Size IRI=10 | |RI=15| |R[=20 | |R|=30
v, | 264.4 196.2 91.4 105.2

Table 14. Comparison of different algorithms on random netwafrRg = 50 with different group
sizes. Computational time feachrun is 320 seconds.

. Group Size |R| = 10
Algorithms —
€ Yer ‘ Yer - ‘ [y | ‘ % Yer Coverage YuwosacLs ‘ Yvoear | Ymoeme
MOSAGLS 37.72 66.08 103.8 14.69% | YwmosacLs \ 0.64 0.82
MOEA1 6.48 11046 11694 2.91% Ymoeat 0.01 \ 0.55
MOEA2 2.76 94.84 97.6 1.16% Ymoes 0.01 0.19 \
. Group Size |R| = 15
Algorithms —
€ Yer | Yer~ ‘ Iy | ‘ % Yor Coverage| Ywosacis | Ymoear | Ymoes
MOSAGLS | 30.3 61.9 92.2 1591% | YmosacLs \ 0.7 0.84
MOEA1 3.26 95.7 98.96 1.67% Ymoeal 0.04 \ 0.76
MOEA2 1.38 85.76 87.14 0.54% | Ywoem 0.02 0.14 \

Table 15. Comparison of different algoritaon random networks of |V| 200 with different
group sizes. Computational time for each run is 320 seconds.

. Group Size |[R| =20
Algorithms =
€ Ype ‘ Ype> ‘ |y | ‘ % Yor Coverage, Ywosacts ‘ YmoeaL ‘ YmoeA2
MOSAGLS 2.15 16.36 18.51 2.9% YmosacLs \ 0.9 0.97
MOEA1 0.05 17.60 17.66 0.05% YmoEAL 0.004 \ 0.71
MOEA2 0.004 14.72 14.72 0.004% Ymoea 0.008 0.13 \
. Group Size |[R| =30
Algorithms =
€ Yo | Ypr> ‘ [y | ‘ % Yer Coverage| YwvosacLs ‘ YmoEAL ‘ Yvoea
MOSAGLS | 0928  4.146 5.074 0.93% | YumosacLs \ 0.9 1
MOEA1 0.13 5.62 5.75 0.08% Ymoeat 0.002 \ 0.7
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MOEA? 0 459 459 0 | Ywee |0 017 "\

Table 14 and Table 15 present results of the three algorithms on the randomsetwork
with different characteristics. Average results from 10 runs on 10 differstances for
each type of networks show that MOSAGLS significantly outperforms the two MOEA
algorithms by finding more non-dominated solutiam&sr. The non-dominated solution
set obtained by MOSAGLS covers most of the non-dominated solutions found by
MOEAl1 and MOEA2. This again demonstrates the effectiveness of our proposed
MOSAGLS algorithm on the random networks with all five objectives defined.

To summarise, the large amount of experiments on a range of multi-objective MRPs
with different features demonstrate the efficiency and effectivenessiroproposed
simulated annealing based multi-objective genetic local search algorithm MCSAG
The SA strategies improve the performance of the algorithm by finding better non
dominated solutions in less computing time compared with conventional multi-ebjecti
evolutionary algorithms. The adaptive mutation contributes a better performandkahan
of fixed mutation rates. The local search further improves the performaM®@®AGLS
however at a higher computational time. Comparisons on both the benchmark problems
and random networks demonstrate that the proposed MOSAGLS has the best
performance among variants of algorithms, and show that MOSAGLS is able to find high
quality solutions for multi-objective MRPs with different features.

5 Conclusions

In this paper, we investigate the first simulated annealing based multi-objgetietic
local search (MOSAGLSor solving multi-objective MRPs. A new simulated annealing
based adaptive mutation probability is proposed in MOSAGLS, which can adaptively
adjust the mutation rate according to the fithess of the new solution againsethgeav
quality of the current population during the genetic evolution procedure. In additmn, t
adaptation strategies based simulated annealing are adopted to tune the search
directions in MOSAGLS. One is the competition between similar menitéing current
population, another one is the two-phase strategy for tuning weight vedategrated
with these simulated annealing strategies, the hybrid multi-obgegtnetic local search

is able to efficiently search towards the Pareto front and divets#fypbpulation with
regard to the multiple objectives in the problem.

Due to the complex structure of the multicast tree, an ordered set of paths has been
used to represent solutions. Based on this simple solution representatiorgswver
and mutation operators have been specifically designed concerning the networkestructu
to facilitate efficient and effective operations and improve the objective valilks tree
while satisfying the constraint. Finally, the local search further intessifie search by
exploring more promising neighboring solutions based on a binary string solution
representation.

Through a large amount of extensive simulations, we evaluate our proposed
MOSAGLS on both benchmarks and a series of random networks with different
objectives and different features. Experimental results show that the simulatelihgnnea
strategies significantly improve our proposed algorithm compared against atvather
conventional MOEA algorithms in the literature with respect to both thei@olgtiality
and computing time for the multi-objective MRPs. This demonstrates that bettesl cont
of the evolution by using the simulated annealing strategies significantlpves the
efficiency and effectiveness of MOSAGLS. Compared with the simulated annealing
based multi-objective genetic algorithm without local search, MOSAGLS obtained
significantly better results but at larger computational expenses.

The proposed MOSAGLS algorithm has shown to be an ideal approach for solving
the multi-objective MRPs, and is flexible to be extended to solve other mjdttivie
optimisation problems. In our future work, we also intend to investigate the influence of
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different selection strategies and adaptive crossover in the hybridttaigoiMore
efficient and effective local search methods and the choice of starting sofotidosal

search may be investigated to reduce the computational time of the hybrid algorithm
Other Pareto dominance methods may also be applied to further improve the search
towards the Pareto front in the MOSAGLS algorithm. In addition, some recent pbwerf
multi-objective optimization algorithms can be investigated in our future work.
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