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Abstract. This paper presents a new hybrid evolutionary algorithm to solve multi-objective 
multicast routing problems in telecommunication networks. The algorithm combines simulated 
annealing strategies and genetic local search, aiming at a more flexible and effective exploration 
and exploitation in the search space of the complex problem to find more non-dominated solutions 
in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation 
operators have been specifically devised concerning the features and constraints in the problem. A 
new adaptive mutation probability based on simulated annealing is proposed in the hybrid 
algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against 
the average quality of the current population during the evolution procedure. Two simulated 
annealing based search direction tuning strategies are applied to improve the efficiency and 
effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some 
benchmark multi-objective multicast routing instances and a large amount of random networks 
with five real world objectives including cost, delay, link utilizations, average delay and delay 
variation in telecommunication networks. Experimental results demonstrate that both the 
simulated annealing strategies and the genetic local search within the proposed multi-objective 
algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify 
high quality non-dominated solution set for multi-objective multicast routing problems and 
outperform other conventional multi-objective evolutionary algorithms in the literature.  

Keywords Multi-objective Genetic Local Search, Simulated Annealing, Multicast 
Routing 
 

1 Introduction 

1.1 The Multicast Routing Problem (MRP) 

Multicast is a telecommunication technique that simultaneously transfers information (IP 
datagrams) from a source to a group of destinations in communication networks. 
Compared to unicast, which relies on the point-to-point transmission, multicast is a more 
efficient solution which utilises the parallelism in networks. In this work, we consider the 
Multicast Routing Problem (MRP), which concerns finding the spanning tree while 
optimising the resource usage within the network. Due to the increasing development of 
numerous multicast network applications including distance learning, E-commerce and 



2 

video/audio conferencing, the MRP has become one of the key problems in multimedia 
telecommunications and received increasing research attention in operational research. 

Real world multicast applications generally have some Quality of Service (QoS) 
parameters or constraints and objectives. For example, an important and common QoS 
constraint in multicast routing applications is the bounded end-to-end delay. That is, 
messages must be transmitted from the source to destinations via the multicast tree within 
a certain limited time; otherwise most customers would cancel their requests. The 
efficient allocation of network resources to satisfy different QoS requirements, for 
example, minimising the cost of transmission via the multicast tree, is the primary goal of 
QoS-based multicast routing. 

It is well known that the Steiner tree problem (Hwang and Richards 1992), the 
underlying model of MRPs, is a NP-hard combinatorial optimisation problem (Garey and 
Johnson 1979). It has also been proved that finding a feasible multicast tree with two 
independent path constraints is NP-hard (Chen and Nahrestedt 1998). The constrained 
Steiner tree problem under various QoS constraints is thus also NP- hard (Kompella et al. 
1993). This makes the complex QoS based MRPs one of the challenging optimisation 
problems. Over the past decade, the problem has attracted increasing attention from the 
meta-heuristic research community in both computer communications and operational 
research (Diot et al. 1997; Yeo et al. 2004; Oliveira et al. 2005). A large amount of 
investigations on meta-heuristic algorithms exist in the literature (Haghighat et al. 2004; 
Kun et al. 2005; Skorin-Kapov and Kos 2006; Zahrani et al. 2008; Qu et al. 2009). 
However, at the early stage, the MRPs have been mainly defined and solved as a single-
objective optimisation problem subject to certain QoS constraints, i.e. to minimise the 
tree cost subject to a maximum end-to-end delay restriction. 

With a range of inter-dependent and conflicting multiple QoS objectives and 
constraints (e.g. cost, delay, bandwidth, link utilisation, delay variation, packet loss ratio 
and hop count) in real world applications, the QoS-based MRPs can be more 
appropriately defined as multi-objective optimisation problems. Recent multi-objective 
optimisation algorithms for MRPs have been investigated concerning more realistic 
constraints and objectives. 

1.2 Related Work 

A recent survey in (Fabregat et al. 2005) has reviewed a variety of multi-objective 
multicast routing algorithms. In Table 1, we categorise meta-heuristic algorithms in the 
literature according to the objectives and constraints considered in problems, where a 
single multicast tree is constructed. It can be seen that different meta-heuristics, e.g. 
genetic algorithm, ant colony algorithm, artificial immune algorithm and particle swarm 
optimisation, have been investigated for multi-objective MRPs with various objectives. 
Due to the nature of multi-objective optimisation, where a set of alternative solutions is 
considered, it is not surprising to see that genetic algorithms, one of the mostly studied 
population based algorithms, have been adapted in most multi-objective multicast routing 
algorithms. 

Roy et al. (2002) adapt the widely studied multi-objective NSGA (Non-dominated 
Sorting based Genetic Algorithm) (Srinivas and Deb 1994) to simultaneously optimise 
end-to-end delay, bandwidth and residential bandwidth utilisation rather than combining 
them into a single weighted sum objective function for wireless network routing problems. 
Due to the user mobility and uncertainties in wireless cellular networks, Roy and Das 
(2004) employ a fast and efficient QoS-based mobile multicast routing protocol based on 
multi-objective genetic algorithms for dynamic MRPs. In Crichigno and Baran (2004a) 
and Crichigno and Baran (2004b), two multi-objective evolutionary algorithms (MOEA) 
with an external population of Pareto optimal solutions have been proposed based on the 
strength Pareto evolutionary algorithm (Zitzler and Thiele 1999). Experimental analysis 
shows that MOEA1 with a binary tournament selection outperforms MOEA2 with a 
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roulette wheel selection. Other multi-objective genetic algorithms include Koyama et al. 
(2004), which optimise the cost and delay of the multicast tree and Cui et al. (2003), 
which develop the algorithm based on Pareto dominance. 

Table 1. Multi-objective multicast routing meta-heuristics, categorised by objectives and 
constraints considered, ordered by the year of publication. (MOEA: multi-objective evolutionary 
algorithm; MOGA: multi-objective genetic algorithm) 

Meta-heuristic Algorithms 

Objectives Constra
ints 

C
ost 

D
elay 

 A
verage 

D
elay 

L
ink  

U
tilisation 

B
andw

idth 

P
acket 
L

oss 

D
elay jitter 

L
ink 
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apacity 

D
elay 

MOEA based on NSGA (Roy et al. 2002)  x  x x     
MOGA (Cui et al. 2003)  x   x x   x 
QoS-based mobile multicast routing protocol based 
on MOGA (Roy and Das 2004) 

 x 
 

x x     

MOEA1 (Crichigno and Baran 2004a) and MOEA2 
(Crichigno and Baran 2004b) based on the strength 
Pareto evolutionary algorithm  

x x 
 

x    x  

MOGA (Koyama et al. 2004) x x        
Multi-objective Ant colony optimisation systems 
(Diego and Baran 2005) 

x x 
 

x    x  

Multi-objective immune algorithm (Wang et al. 
2006) 

x x 
 

 x   x x 

Hybrid genetic algorithm and particle swarm 
optimisation (Li et al. 2007) 

x x 
 

x    x  

MOGA with Fuzzy based parameter setting for QoS 
multicasting in wireless ad hoc networks (Rai et al. 
2010) 

 x 
 

  x x   

MOGA for QoS multicasting in wireless ad hoc 
networks (Huang and Liu 2010) 

 x 
 

 x x x   

Evolutionary multi-objective simulated annealing 
(Xu and Qu 2011) 

x x x x   
 
 

x  

 

A variety of other population based meta-heuristics also appear in the multi-
objective multicast routing literature. Two ant colony optimisation algorithms in (Diego 
and Baran 2005) have shown to find more non-dominated solutions than the MOEA2 
algorithm in (Crichigno and Baran 2004b) on benchmark problems with different features 
using the same computational expenses. Wang et al. (2006) propose a QoS multicast 
routing model based on an artificial immune system with a gene library and a clone 
search operator to search for better solutions. The algorithm can effectively identify a set 
of Pareto optimisation solutions compromising multiple QoS objectives. Particle swarm 
optimisation has also been investigated in (Li et al. 2007) to enhance selected elite 
individuals before generating the next generation within a hybrid multi-objective genetic 
algorithm. 

In the recent multi-objective optimisation research, various simulated annealing (SA) 
approaches (Czyzzak and Jaszkiewicz 1998; Ehrgott and Gandibleux 2000; Landa-Silva 
et al. 2004; Li and Landa-Silva 2008; Martins and Costa 2010; Xu and Qu 2011) have 
been successfully applied for different multi-objective optimization problems. Annealing 
is known as a thermal process, where a solid is melted by increasing its temperature and 
then followed by a slow progressive temperature decrease aiming at recovering a solid 
state of lower energy. The SA algorithm simulates the physical annealing process to solve 
optimisation problems, where a solution corresponds to a state of the physical system and 
the fitness value of a solution corresponds to the energy of a state. It has the ability in this 
process to escape from local optima by visiting worse neighbouring solutions, and shows 
to be very effective when exploring the search space of complex multi-objective 
optimisation problems. Meanwhile, genetic local search algorithms (Ishibuchi and Murata 
1998; Jaszkiewicz 2002; Mendoza et al. 2010) have been investigated for different multi-
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objective optimisation problems. Due to the ability of local search to find local optima 
effectively over a relatively small part of the search space, genetic local search algorithms 
have been shown to be very suitable for solving complex multi-objective optimisation 
problems. Refer to (Beume et al. 2007; Zhang and Li , 2007; Li and Zhang, 2009; Bader 
and Zitzler, 2011; Ishibuchi et al. 2011; etc.) for some recent multi-objective optimization 
algorithms.  

To our knowledge, there is no investigation on hybridizing SA with genetic local 
search algorithms to multi-objective MRPs. The only two recent relevant algorithms that 
we are aware of are applied to single objective MRPs. In (Zahrani et al. 2008), a genetic 
local search utilises a logarithmic simulated annealing in a pre-processing step to analyze 
the landscape of a single objective MRP subject to multiple constraints in a group 
multicast scenario. Another genetic simulated annealing algorithm has been proposed in 
(Zhang et al. 2009) for delay jitter bounded least-cost MRP with bandwidth and delay 
constraints. Simulated annealing is used to compute the probability of accepting newly 
generated solutions. These two methods have shown to be effective in solving single 
objective MRPs. 

In our recent work (Xu and Qu 2011), simulated annealing strategies have shown to 
be effective in driving a population of solutions towards the Pareto front of MRPs with 
four objectives. However, together with the variable neighborhoods specially designed 
for MRPs, they have shown to have much less impact on the algorithm performance. In 
solving complex problems such as MRPs with special solution structure, specifically 
designed neighborhood operators with regard to problem features have shown to be 
highly effective on improving algorithm performance. 

In this work, motivated by the efficiency of both the simulated annealing strategies 
and genetic local search, we develop the first multi-objective simulated annealing based 
genetic local search (MOSAGLS) algorithm to solve the multi-objective MRPs. The 
hybrid MOSAGLS algorithm aims to combine the strengths of both Simulated Annealing 
and Genetic Algorithm. On the one hand, genetic algorithms have been widely used for 
solving multi-objective optimisation problems in the literature due to their population-
based nature and the ability to simultaneously search different regions of a solution space. 
On the other hand, Simulated Annealing has the character of escaping from local optima 
by intelligently accepting worse solutions thus addressing the issue of premature 
convergence of GAs. In our proposed MOSAGLS, a new genetic local search with 
genetic operators which are specially designed for MRPs has been developed to 
simultaneously minimise five real life objectives, namely (1) the cost, (2) the maximum 
end-to-end delay, (3) the maximum link utilisation (4) the average delay and (5) of the 
delay variation of the multicast tree. MOSAGLS evolves by using SA-based strategies 
within the genetic evolutionary process to generate non-dominated solutions. A new SA-
based adaptive mutation probability is also used to improve the performance of the hybrid 
algorithm. The impact of the SA strategies and the local search within the genetic 
evolution has been investigated within this new hybrid algorithm.  

The rest of the paper is organised as follows. In Section 2, the multi-objective MRP is 
formally defined. Section 3 and Section 4 present the proposed hybrid algorithm and 
evaluate its performance by experimental results. Finally, Section 5 concludes the paper. 

2 The Multi-objective MRP 

The multi-objective optimisation problem with n decision variables, k objective functions 
and q restrictions can be defined as follows (Deb 2005): 

 

Optimise F(x) = (f1(x), f2(x), …, fk(x))  (1) 
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s.t. e(x) = (e1(x), e2(x), …, eq(x))  0  

where 
X: the decision space of feasible regions in the solution space. 
x: a vector of decision variables or a solution, x = (x1, x2, …, xn)  X. 
fi(x) (i = 1, …, k): objective functions with k objectives to be optimised. 
F(x): the image of x in the k-objective space given by the vector of k objective 
functions fi(x). 
ei(x) (i = 1, …, q): the set of restrictions which determines the set of feasible solutions. 

Multi-objective optimisation generally concerns a set of trade-off optimal solutions, none 
of which can be considered superior to the others in the search space when all objectives 
are taken into consideration. The set of all these Pareto-optimal solutions in X is called 
the Pareto-optimal Set. 

To model the general MRP, we denote a communication network as a directed graph 
G = (V, E) with |V| =  n nodes and |E| =  l links. The following notations are used in the 
rest of the paper: 

(i ,j) E: the link from node i to node j, i, j V. 
cijR+: the cost of link (i ,j). 
dijR+: the delay of link (i ,j). 
zijR+: the capacity of link (i ,j), measured in Mbps. 
tijR+: the current traffic of link (i ,j), measured in Mbps. 
s V: the source node of a multicast group. 
R V – {s} : the set of destinations of a multicast group. 
rdR: the destinations in a multicast group. 
|R|: the cardinality of R, i.e. the number of destinations, also called group size. 
R+: the traffic demand (bandwidth requirement) of a multicast request, 

measured in Mbps. 
T(s, R): the multicast tree with the source node s spanning all destinations rdR.  
pT(s, rd) T(s, R): the path connecting the source s and a destination rdR in the 

multicast tree T. 
d(pT(s, rd)): the delay of path pT(s, rd), given by d(pT(s, rd)) = 

 ) ,(),( dT rspji

ij
d , rdR 

Based on the above definitions, a multi-objective MRP can then be formulated as a multi-
objective optimisation problem. In this paper, we consider the multi-objective MRP with 
more objectives than those defined in our previous work (Xu and Qu 2011) and in 
(Crichigno and Baran 2004a). The problem is to find a multicast tree while minimising 
the values of the following five objectives:  

The cost of the multicast tree: 

C(T) =  · 
Tji

ij
c

),(

 

(2) 

The maximal end-to-end delay of the multicast tree: 

DM(T) = Max{d(pT(s, rd))}, r d  R 

(3) 

The maximal link utilisation: 

g(T) = Max










 

ij

ij

z

t , (i, j) T 

(4) 
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The average delay of the multicast tree: 

DA(T) = 
 Rrd

d
R ||

1 (pT(s, rd))  

 

(5) 

Delay variation of the multicast tree: 

DV(T) = Max{d(pT(s, rd))} – Min{d(pT(s, rj))}, r d, rj R  

(6) 

Objective (2) aims to minimise the cost occurred as the multicast tree T occupies certain 
required bandwidth on links in the network. Objective (3) minimises the maximal delay 
time of sending the data via the multicast tree so that they arrive all destinations within a 
shortest bounded time. Objective (4) tries to minimise the maximal link utilisation, i.e. 
traffic demand over the available bandwidth on the links. Objective (5) minimises the 
average delay time of sending the data so they arrive all |R| destinations in the shortest 
average time. Objective (6) minimises the delay variation of the multicast tree, which is 
defined as the difference between the maximum and minimum delays among all the path 
delays from the source to all destinations. Note that objective (3) concerns the maximal 
delay within the multicast tree, while objectives (5) and (6) minimise the average delay 
and the delay variation, respectively, thus concerning the delay to all destinations in the 
network. These five objectives have some correlations. For example, the delay-related 
objectives 2), 4) and 5) (Eq.3, Eq.5 and Eq.6) which are dependent on the delays from the 
source to destinations in the tree are strongly correlated. The cost of the multicast tree, i.e., 
Objective 1) is conflicting with these delay-related objective 2), 4) and 5), since the 
decrease of the tree cost normally brings the increment of delays. The link utilization 
seems conflicting with the tree cost and the delay-related objectives, since the decrease of 
the link utilization causes the increase of the cost and delays. As indicated by the 
literature, these objectives represent the most common requirements in communications. 
It remains interesting future work to formulate a wider range of various objectives based 
on the above defined problem for different applications with specific requirements.  

In communication networks, the total bandwidth of datagrams on a link must not 
exceed the limited bandwidth available. Hence, the total traffic on link (i, j), i.e. the traffic 
demand  of a multicast request plus the current traffic tij is subject to the link capacity zij: 

 

 + tij ≤ zij, (i, j)  T(s, R) (7) 

Due to the complex real world constraints in multi-objective MRPs, the search space of 
such problems becomes highly restricted and unpredictable (Xu and Qu 2012). This 
demands more efficient and effective optimisation techniques to traverse the search space 
of such problems with many local optimal solutions and disconnected regions of feasible 
solutions.  

3. The Simulated Annealing Based Multi-objective Genetic 
Local Search (MOSAGLS) Algorithm  

The proposed multi-objective simulated annealing based genetic local search 
(MOSAGLS) evolves by using simulated annealing strategies within the genetic 
evolutionary process concerning non-dominated solutions with regard to the five 
objectives defined. Figure 1 shows the flowchart of our proposed MOSAGLS algorithm, 
details presented in the following subsections. 

In MOSAGLS, the initial population of multicast trees is randomly generated. During 
the evolution, parent solutions are chosen to produce child trees by using the defined 
crossover and mutation operators. A local search is then applied to the generated child 
tree to produce a new improved tree. An external solution set NDS is maintained to record 



7 

the non-dominated solutions obtained during the evolution. The MOSAGLS stops after a 
certain computational time, or the temperature in the SA drops to the final temperature. 
The NDS after the evolution is finished is output as the final results. More details of the 
genetic local search algorithm are given in Section 3.2. 

 
Figure 1. The flowchart of the proposed MOSAGLS algorithm 
 

The proposed MOSAGLS evolves by using the SA strategies to adaptively set the 
mutation rate, to guide the search directions and to make decision of solution acceptance. 
A temperature is defined and decreased through generations. Firstly, after crossover, 
mutation is carried out based on an adaptive rate according to both the current 
temperature and the fitness of the offspring and current population. Secondly, each 
solution in the population is associated with a random weight vector. This vector, 
together with the temperature, takes part in the solution acceptance and the tuning of 

g < Maxgen? 

Set parameters for SA 
tmax the initial temperature; tmin the final temperature; 
tstep the temperature decrement; tc the threshold temperature; 
Set the current temperature t = tmax; 

t > tmin? 

Genetic local search procedure 
Selection of parents; 
SA based adaptive mutation; 
Crossover; 
Local search; 
SA based updating of parents; 
Update NDS and calculate fitness of solutions; 

SA based competition 

Intialisation 
Generate an initial population P; 
Form NDS (non-dominated solution set) from P; 
Set the maximal number of generations Maxgen; 
g = 0; //the index of generation; 

t > tc? 

SA based search direction tuning 

Temperature decrement 
t = t – tstep 

SA based search direction tuning 

g = g + 1 

Return NDS 

N 

Y 

N 

Y 

N 

Y 
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search directions. That is, the newly generated trees replace the selected parent based on a 
probability calculated using the weight vector and the current temperature. When the 
temperature is decreased to below a threshold, the weight vector is modified to tune the 
search directions. More details of the SA strategies are given in Section 3.3. 

3.1 The representation of the Multicast Tree 

In the proposed MOSAGLS algorithm, we adopt the encoding method in Fabregat et al. 
(2005) to represent the solutions (multicast trees) for MRPs in both the genetic local 
search and SA process. In this simple yet effective representation, a multicast tree is 
represented by an ordered set of |R| paths from the source node s to each destination rdR, 
|R| is the group size. That is, each solution contains |R| components {g1, g2, …, g|R|}, 
where gi represents a path between the source node s and the d-th destination node rd, d = 
1, … |R|. 

Given the benchmark NSF (National Science Foundation) network (Cui et al. 2003) in 
Figure 2, an example multicast tree and its representation in MOSAGLS are shown in 
Figure 3. The NSF network is a major part of the early 1990s Internet backbone for 
mainly academic uses. It has been tested as a benchmark problem in the existing literature 
by a number of researchers (Crichigno and Baran 2004a; Crichigno and Baran 2004b; Xu 
and Qu 2011). 

 
Figure 2. The NSF (National Science Foundation) network. On each link, dij, cij and tij denote the 
delay, the cost and the current traffic. The traffic demand  =0.2Mbps, the capacity zij=1.5Mbps. 
The source node s=5, the destinations R={0,4,9,10,13}. 
 
 

 

 

The Solution Encoding 
Gene Path 
g1 5-4-2-0 
g2 5-4 
g3 5-4-10-11-9 
g4 5-4-10 
g5 5-4-10-12-13 

(a) A multicast tree for the NSF network in Figure 2 (b) The representation of the solution in (a) 

Figure 3. An example multicast tree and its representation for the NSF network in Figure 2. 

3.2 The Genetic Local Search in MOSAGLS 

Genetic algorithms represent one of the mostly investigated evolutionary algorithms in 
the literature. It simulates the evolutionary process of the nature to evolve from a 
population of individuals by using genetic operators (Goldberg 1989). Better individuals 
of higher fitness have more chance to evolve individuals which inherit good building 
blocks. 
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In the evolutionary process of our proposed MOSAGLS, the initial population consists 
of a fixed number of random multicast trees. They are generated by starting from the 
source node and randomly selecting the next connected node until all the destination 
nodes have been added to the tree. In each generation, crossover and mutation operations 
are carried out on two randomly selected parents from the current population. A local 
search is used to further explore better neighboring solutions of the generated tree. A non-
dominated set NDS are maintained during the evolution. It stores the newly generated tree 
if it is not dominated by any tree in the current NDS, and removes the trees which are 
dominated by the generated tree.  

For the multi -objective MRPs being concerned, the strength Pareto based evaluation in 
(Zitzler and Thiele 1999) is adopted in the genetic algorithm in MOSAGLS to calculate 
the fitness of individuals. It is used to maintain and update the NDS set as well as used in 
the selection, crossover and mutation operations. 

3.2.1 The strength Pareto based evaluation 

The value of the five objective functions (2)-(6) defined in Section 2 is calculated for 
each individual. Based on these values, the fitness of each individual is evaluated by 
using the evaluation method of the Strength Pareto EA in (Zitzler and Thiele 1999) as 
follows:  

1) For each non-dominated solution TiNDS, a strength qi[0,1] is calculated. It is the 
proportion of the number of solutions Tj which are dominated by Ti to the population 
size, i.e. Tj is dominated by Ti, denoted by Ti  Tj: 

qi = 
jijj

TTPTT |  / |P| (7) 

2) For each individual Tj in the population, the strength qj[1, 1+|NDS|] is calculated by 
summing the strength of all non-dominated solutions TiNDS, where Ti  Tj, plus one: 





jii TTNDST

ij
qq
,

1  (8) 

3) Finally, the fitness of each individual Tj in the population F(Tj) is calculated as the 
inverse of its strength qj: 

F(Tj) = qj
-1 (9) 

The strength Pareto based evaluation in our algorithm is similar to that is used in MOEA 
algorithms in (Crichigno and Baran 2004a; Crichigno and Baran 2004b). In this work, we 
focus on the investigation of genetic local search with SA strategies, so this simple and 
effective strength Pareto based evaluation method in the literature has been adopted. It 
also enables us to carry out fair comparisons to evaluate the performance of our proposed 
hybrid algorithm against the MOEA algorithms in the experiments in Section 4. 

3.2.2 The selection method 

We employ the binary tournament selection method, also used in the MOEA algorithm in 
(Crichigno and Baran 2004a), to select parents. Each time two individuals from the 
population are randomly selected. The individual with a higher fitness value defined by 
the strength Pareto based evaluation in (9) wins the tournament and is selected as a parent. 
Two parents are chosen by applying the tournament selection twice. 
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3.2.3 The crossover operation 

A two-point crossover operator, with a crossover rate of 1, is applied to each selected pair 
of parents. Based on the representation of the ordered set of paths in Section 3.1, the paths 
between two randomly generated points in one parent are selected and replaced by the 
corresponding paths in the other parent. Note that some selected paths may share the 
same links with some remaining paths. Such links will not be removed to ensure the tree 
is connected. To avoid loops in generating the new multicast tree, the selected path will 
be replaced by adding the new path from its destination node until it connects to an on-
tree node. 

An example of the crossover operation is shown in Figure 4, where path g3 = (5-4-10-
12-8-7-13-9) between the selected two crossover points in parent 1 is replaced by the new 
corresponding path (5-6-1-0-3-10-11-9) of g3 in parent 2. To avoid loops in the generated 
multicast tree, the new path (5-6-1-0-3-10-11-9) is added to the tree by starting from the 
destination node 9, and adding only the path 9-11-10 until it connects to the on-tree node 
10. A new tree is then generated as shown in Figure 4(c). 

The simple representation of multicast trees (see Section 3.1) facilitates an easy 
implementation of crossover operations. By adding the selected path(s) in parent 2 from 
the destination node, the newly generated offspring is guaranteed to be feasible (if the 
link capacity constraint (7) is satisfied). Note that while g3 = (5-4-10-12-8-7-13-9) in 
parent 1 is being replaced, the links along the path (5-4-10-12-8-7-13) still remains in the 
multicast tree as they also appear in g5 in the original tree of parent 1. In multicast trees, 
some paths share common links, especially those near the root of the tree, i.e. links near 
the source node appear multiple times in the solution. This is due to the nature of the 
multicast tree that all paths must pass a subset of the ds links from the source node, where 
ds is the degree of the source node. These (partial) paths in the tree are adaptively selected 
through the evolution process of MOSAGLS if they present to be good building blocks in 
the individuals. 

 
 

(a) Parent 1, objective values: C(T) =  11.2, DM(T) =  60, (T) = 0.67, DA(T) = 38.4, DV(T) = 53 

 

 
 

(b) Parent 2, objective values: C(T) = 9.2, DM(T) = 75, (T) = 0.73, DA(T) = 49, DV(T) = 68 
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Parent 1  
Gene Path 
g1  5-4-10-3-1-0 
g2 5-4 
g3 5-4-10-12-8-7-13-9 
g4 5-4-10 
g5 5-4-10-12-8-7-13 

 

Parent 2 
Gene Path 
g1  5-6-1-0 
g2 5-4 
g3 5-6-1-0-3-10-11-9 
g4 5-6-1-0-3-10 
g5 5-6-1-0-2-7-13 

 

Crossover points 

Crossover points 



11 

 
 

(c) New offspring tree after the crossover, objective values: 

C(T) = 11.4, DM(T) = 55, (T) = 0.6, DA(T) = 33.4, DV(T) = 48 

Figure 4. An example of the two-point crossover operation  

3.2.4 The mutation operation 

In our MOSAGLS algorithm, mutation is carried out with an adaptive probability by 
using both the evolutionary information and SA strategies. The adaptive probability is 
calculated based on not only the fitness of the individual, but also the current temperature. 
More details of the SA strategies are given in Section 3.3.1. 
 

ID Least cost paths ID Least delay paths ID Least used paths 
1 5-6-1-0 1 5-4-2-0 1 5-4-10-3-0 
2 5-4-2-0 2 5-6-1-0 2 5-6-1-0 
3 5-6-9-11-10-3-0 3 5-4-10-3-0 3 5-4-2-0 
4 5-6-1-3-0 4 5-4-2-7-8-9-6-1-0 4 5-4-10-11-9-6-1-0 
5 5-4-10-3-0 5 5-6-9-8-7-2-0 5 5-4-10-3-1-0 

 

(a) Routing table of destination node r1 = 0 for the multicast tree in Figure 4(c) 

 

 

Solution 
Gene Path 
g1 5-4-10-11-9-6-1-0 
g2 5-4 
g3 5-4-10-11-9 
g4 5-4-10 
g5 5-4-10-12-8-7-13 

(b) The multicast tree after mutation to the tree in Figure 4(c).  
Objective values: C(T) = 11.4, DM(T) = 71, g(T) = 0.6, DA(T) = 36.6, DV(T) = 64 

Figure 5. An example of the mutation operation 

For a selected individual, the mutation operation randomly replaces a path by using an 
alternative path stored in a routing table, which is the same as that is devised in 
(Crichigno and Baran 2004a). The routing table for the destination rdR of the selected 
path gd is consists of m least cost, m least delay and m least used paths (least util isation 
path) generated by using the k-shortest path algorithm (Eppstein 1998). As objectives (2), 
(3) and (6) defined in Section 2 are all related to the delay objective, they share the same 
least delay paths in the routing table. A new randomly selected path p{path1, …, path3m} 
in the routing table then replaces the original path gd from the source to the destination rd. 

An illustration of the mutation operation is given in Figure 5 for the offspring 
generated in Figure 4(c). Figure 5(a) presents the routing table of destination r1 = 0, 
listing 5 paths for each objective, i.e. m = 5 in this example. If a random path (5-4-10-11-
9-6-1-0) is selected from the routing table, a new solution is generated in Figure 5(b) by 
replacing the original path (5-4-10-3-1-0) of g1 in Figure 4(c). 

3.2.5 The local search in MOSAGLS 

Instead of reproducing the offspring directly to the next generation, a local search is 
applied to further enhance the offspring, simulating the maturing phenomenon in the 
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Gene Path 
g1  5-4-10-3-1-0 
g2 5-4 
g3 5-4-10-11-9 
g4 5-4-10 
g5 5-4-10-12-8-7-13 
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nature. To apply the local search, each solution (a multicast tree) is firstly represented by 
a binary array of |V| = n bits, each corresponding to a node in the multicast tree. Each bit 
is assigned a value 1 if the corresponding node is on the tree; 0 otherwise. This 
representation has been widely used in the literature and shows to be effective for local 
search and genetic operations for MRPs (Skorin-Kapov and Kos 2003; Skorin-Kapov and 
Kos 2006).  

In our MOSAGLS, the neighborhood operator of the local search is based on the well-
known Prim’s minimum spanning tree algorithm (Betsekas and Gallager 1992) which 
finds a tree with the minimal total weights of the links spanning a subset of nodes in the 
graph. The local search repeatedly flips a bit in the binary array which represents a 
solution until a new better multicast tree is found or a fixed maximum number of nodes 
have been flipped. This local search method can greatly improve the solutions with regard 
to the five objectives by using the strength Pareto based evaluation (9). After the local 
search is applied to the above solution in Figure 5(b), a new solution is shown in Figure 6. 

 

 

Solution 
Gene Path 

g1 5-6-9-11-10-3-0 
g2 5-4 
g3 5-6-9 
g4 5-6-9-11-10 
g5 5-6-9-8-12-13 

Figure 6. An example solution after the local search on the solution in Figure 5(b). Objective 
values: C(T) = 8.8, DM(T) = 53, (T) = 0.6, DA(T) = 27, DV(T) = 46 

This node-based local search has been applied in our previous work (Qu et al. 2009). 
The selection of the neighborhood operator is based on our previous observation that the 
node-based neighborhood operator is easy to implement and effective for searching better 
neighborhood solutions. In this paper, we just investigate the this simple yet effective 
local search operator. More efficient and effective local search methods and the choice of 
starting solutions for local search (Ishibuchi et al. 2010) may be investigated to reduce the 
computational time of the hybrid algorithm in our future work. 

Based on the procedure described above, Figure 7 presents the pseudo-code of the 
hybrid MOSAGLS. In order to improve the performance of MOSAGLS, as shown in 
Figure 7, several SA strategies have been applied. We illustrate these strategies in the 
following subsections. 
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Figure 7. The pseudo-code of the MOSAGLS algorithm 
 

3.3 Simulated Annealing Strategies in MOSAGLS 

Simulated annealing (Kirkpatrick et al. 1983) is one of the mostly studied probabilistic 
meta-heuristics for global optimisation. The basic idea is inspired from the physical 
annealing process where the heated material is gradually cooled to reduce the defects and 
form large size crystals. Based on this physical process, during the search the SA 
algorithm accepts a non-improved state/solution with a probability depending on the 
temperature in the cooling schedule at that time. As a result, it is able to escape from local 
optima by intelligently accepting worse solutions and effectively explore the search space 
of complex multi-objective optimisation problems (Czyzzak and Jaszkiewicz 1998; Li 
and Landa-Silva 2008). 

In our MOSAGLS, SA strategies have been adopted to 1) set the adaptive mutation 
rate, 2) make decision of the acceptance of the new offspring in the genetic local search, 
and 3) guide the search directions at the later stage of the evolution. 

3.3.1 Simulated annealing based adaptive mutation probability 

In MOSAGLS, mutation is always applied to an offspring if it is better than the average 
of the current population (see more details of the mutation operation in Section 3.2.4). 
For a worse new offspring, mutation is applied with an adaptive probability pm based on 
not only the current temperature but also the difference between the fitness of the new 

MOSAGLS ((G = (V, E), s, R, k) 
{ // G: the network topology; s: the source node; R: the destination set; k: number of objectives 

Generate the random initial population P with T1, …, T|P| multicast trees; 
For T1, …, T|P|, produce |P| distinct random weight vectors 1,…, |P|, each with a uniform spread; 
Select non-dominated solutions with respect to multiple objectives in the population P  to form  NDS; 
Calculate the fitness value of all the solutions in NDS and P by using the strength Pareto based evaluation 
in Eq. (9); 
 
g = 0; 
while (g < Maxgen ) do { 

Current temperature t =  tmax. 
while t ≥ tmin do { 

Randomly select a pair of parent solutions Ti and Tj from P; 
Crossover operation over parents Ti and Tj; 
Mutation with adaptive probability pm to the new solution from crossover; // simulated annealing 
strategy 
Generate Ti’ by applying local search to the new solution after mutation; // Section 3.2.5 
if Ti’ is not dominated by parents Ti or Tj then  

Update NDS; 
Replace a selected parent Tc by Ti’ with the probability P(Tc, Ti’, i, t); // simulated annealing 
strategy 
Re-calculate the fitness for all solutions in NDS and P 
Find the closest solution Tk P of Ti’ 
if (Tk is worse than Ti’) then // simulated annealing strategy 

Tk = Ti’    // replace the closest member Tk in P 
t =  t - tstep    // temperature decrement 
if (t <  tc) then 

TuningSearchDirections(t) // simulated annealing strategy: see Figure 8 
} end of while loop 
g++; 

}  
return NDS; 

} 
Notes: Maxgen is the maximum of generation; tmax/tmin: the starting/final temperatures; tc: the temperature 
threshold for tuning the weight vector ; tstep: the temperature decrement; P: the current population; NDS: the 
non-dominated solution set 

http://en.wikipedia.org/wiki/Crystallographic_defect
http://en.wikipedia.org/wiki/Crystal


14 

offspring and the average fitness of the current population. The adaptive mutation 
probability pm is defined as follows: 

 

Pm = 




 tFF newavge
/||

1

avgnew

avgnew

FF

FF




  (10) 

where the average fitness of the current population Favg and the fitness of the 
new offspring Fnew are calculated by using the strength Pareto based evaluation 
function defined in (9); t: the current temperature. 

 

On the one hand, better offspring near the Pareto front will be given higher chance to be 
evolved by the mutation operation, making the evolution more effective by investing 
computational time on more promising offspring. On the other hand, the mutation rate is 
higher if the current temperature t is higher. This means at the early stage of the evolution, 
worse offspring still has the chance to be mutated, giving the whole population the chance 
to explore more areas of the search space. At the later stage when the mutation rate 
decreases to a small value along with the temperature decrement, worse solutions are 
rarely evolved to encourage the convergence of the algorithm.  

3.3.2 Simulated annealing based Acceptance Probability  

To assist the decision making of accepting a new generated offspring, and to tune the 
search directions in the later stage (see Section 3.3.3), a weighted sum of a convex 
combination of different objectives is used. A Pareto-optimal solution is obtained if it is 
the unique global minimum of the following scalar optimisation problem:  

 

Minimise g(ws)(x, そ) =  

k

i i1
 fi(x), x X  (11) 

where  is a weight vector, i [0,1], i = 1, …, k, k is the number of 
objectives and  

k

i i1
 = 1; each i is associated with an objective 

function fi(x). 

 

Equation (11) is called the weighted scalarising function, one of the mostly used 
scalarising functions in multi-objective algorithms in the literature (see more details of 
other functions in Miettinen 1999). In our MOSAGLS, the probability of a new solution 
x’ to replace a solution x is adopted based on the weighted scalarising function g(ws) in 
eq.(11): 

 

P(x, x’, そ, t) = 
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(12) 

where t > 0 is the current temperature; g(x, x’, ) = g(ws)(x’, ) - g(ws)(x, 
) is the difference between x and x’ by using the weighted scalarising 
function in (11). 

 

In the initialisation of our MOSAGLS algorithm, a normalised weight vector i is 
randomly generated for each solution Ti. At each generation, a new solution Ti’ is 
generated after the local search upon the offspring produced from the chosen pair of 
parent solutions Ti and Tj. The parent of lower quality is then replaced by the newly 
generated tree Ti’ based on the weight vector and the current temperature, i.e. parent with 
a higher probability by comparing P(Ti, Ti’, i, t) and P(Tj, Ti’, j, t) in eq.(12) is replaced. 
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3.3.3 Simulated Annealing based Competition and Search Direction 
Tuning 

Simulated annealing strategies have shown to be effective to tune search directions in 
solving multi-objective traveling salesman problems (Li and Landa-Silva 2008). To tune 
the search directions in our proposed MOSAGLS, two similar adaptation strategies to (Li 
and Landa-Silva 2008) have been adopted. They are designed to diversify the search 
directions and avoid solutions being trapped in local optima during the evolutionary 
process. 

1) The first strategy is defined concerning the competition between close solutions in 
the current population. Euclidean distance, which is widely used in the multi-objective 
optimisation literature, has been used in MOSAGLS to measure the distance between 
two solutions. This is calculated upon the differences between all the objectives values 
in the two solutions for the problem. After a new solution Ti’ is generated, the closest 
solution Tj measured by the Euclidean distance in the current population is chosen as a 
neighbor of Ti’. MOSAGLS then replaces Tj with Ti’ if Tj is worse than Ti’ by 
comparing their weighted scalarising function values using eq.(11), i.e. if g(ws)(Ti’, j) 
< g(Tj, j).  

2) The second strategy aims to tune the search direction when the search is getting 
closer to the Pareto front at the later stage of the evolution. This strategy is similar to 
that of multi-objective SA algorithms in (Czyzzak and Jaszkiewicz 1998) and (Li and 
Landa-Silva 2008). It adaptively tunes the weight vector according to the closest non-
dominated neighboring solution in the current population when the current 
temperature is decreased to below a threshold. The pseudo-code of the search 
direction tuning is presented in Figure 8. 

 
Figure 8. The pseudo-code of search directions tuning by using simulated annealing strategies 
 

The latter two strategies in Section 3.3.2 and Section 3.3.3 on the solution acceptance and 
the tuning of search directions have also been investigated in the simulated annealing 
based multi-objective algorithm named EMOSA in (Xu and Qu 2011) for sovling the 
multi-objective MRPs with only four objectives (i.e. Eq.2, Eq.3, Eq.4 and Eq.5, except 
Eq.6) which has shown effective to found better non-dominated solutions than other 
multi-objective evolutionary algorithms (Crichigno and Baran 2004a; 2004b) in the 
literature. Based on our previous work, these two SA based strategies have been adopted 
to in our proposed MOSAGLS hybridised with the local search operator as the post 
improvement optimisation strategy for solving the multi-objective MRPs with more 
objectives in this paper. 

TuningSearchDirections (t) 
{ // t: current temperature; : the constant for tuning the search direction 

foreach Ti P do {  
Find the closest non-dominated solution Ti’ of Ti in the current population 
by using the Euclidean distance upon i' and i 
foreach obj {1, …, k} do // k: number of objectives { 

if fobj(Ti’) < fobj(Ti) then i
obj =i

obj; 
else i

obj = i
obj /; 

} end of foreach 
Normalise i by setting i

obj = i
obj / 

k

1p

i

p
 } 

} 
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4 Performance Evaluation  

4.1 Simulation Environment and Test Instances 

We have carried out a large amount simulations to test our algorithms on both the 
benchmark and random networks with different objectives. Two variants of our multi-
objective multicast routing algorithms have been evaluated in the following experiments: 

1) MOSAGA, the proposed algorithm without local search, and 
2) MOSAGLS, the proposed algorithm with local search 

Both of these algorithms are new in solving multi-objective MRPs. We firstly evaluate 
different components of these algorithms on a set of random networks with two 
objectives (cost and delay, see Section 2). Based on the observations obtained, we then 
compare our algorithms with the existing algorithms in the literature on two benchmark 
networks with different number of objectives. Finally, we demonstrate the effectiveness 
and efficiency of our algorithms upon a set of random networks with all the five 
objectives defined in Section 2. 

All simulations have been run on a Windows XP computer with PVI 3.4GHZ, 1G 
RAM, and within a multicast routing simulator developed based on Salama’s generator 
(Salama et al. 1997). The multicast routing simulator generates random network 
topologies by using the Waxman’s graph generation algorithm (Waxman 1988). The 
nodes of the network are located within a simulated rectangle of size 4000 4000km2. 
The Euclidean metric is used to determine the distance l(i, j) between pairs of nodes i and 
j. Links connect nodes (u, v), with a probability  

P(i, j) = ß e-l(i , j) / gL, g, ß  (0, 1] (13) 

where L is the maximum distance between two nodes; g and ß are parameters which 
can be set to different values to create desired characteristics in the network. Therefore, a 
large value to ß creates a high average degree to nodes, and a small value to g creates 
long connections between nodes. More details of the simulator can be found in (Salama et 
al. 1997) and (Qu et al. 2009). 

In all our simulations, we set g = 0.25 and ß = 0.40 to generate random network 
topologies. Within the network, the link cost cij is assigned a random value between 
(0,100] to define the current total bandwidth reserved on the link. The link delay dij is 
defined as the propagation delay depending on the length of the link. The link capacity zij 
is set as 1.5Mbps. The current traffic tij is randomly loaded around 50% of its total link 
capacity, which is set the same as that in (Diego and Baran 2005). To encourage scientific 
comparisons, the detailed information of all the problem instances and the experimental 
results has been provided at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. 

4.2 Parameter Settings 

In the evolutionary process of MOSAGA, the population size is set to 50, the number of 
generations is set to 500, and the crossover rate is set to 1. These are the same as those in 
the other two evolutionary algorithms MOEA1 (Crichigno and Baran 2004a) and 
MOEA2 (Crichigno and Baran 2004b) for multi-objective MRPs. Instead of using a fixed 
mutation rate 0.3 in MOEA1 and MOEA2, we employ an adaptive mutation rate in 
MOSAGA. Based on initial tests, we set m = 25 to generate the routing table of 3 m 
alternative paths in the mutation operation. In the SA process of our MOSAGA, we set 
the initial temperature tmax = 50, the final temperature tmin = 5, the temperature decrement 
tstep = 5, and the temperature threshold tc = 25. The parameters of the SA process are kept 
the same as those in the SA based multi-objective algorithm for solving traveling 
salesman problems (Li and Landa-Silva 2008). For simplicity and fair comparisons, we 
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keep the same parameter settings for the proposed algorithms on all the tested instances in 
this paper unless otherwise stated.  

All the parameter values have been also determined after a set of tests to find the 
balance between the quality of solutions and the running time. For example, to obtain a 
proper range of values for the population size and the starting temperature, a set of initial 
tests have been carried on the NSF network shown in Figure 2 to compare the 
performance of MOSAGA with different parameter settings. The optimal Pareto Front 
(PF) of the NSF benchmark problem that composes of 16 solutions has been found by an 
exhaustive search method in (Crichigno and Baran 2004b), where four objectives (2), (3), 
(4) and (5) have been considered in the algorithms. We thus considered the same four 
objectives in our MOSAGA algorithms in this group of tests. Table 2 presents the 
maximum, minimum and average number of non-dominated solutions found by each 
variant of MOSAGA in 50 runs. The setting of population size pop = 50 and the starting 
temperature tmax = 50 provides the best solutions and requires less computing time, is thus 
selected in our algorithms. 

Table 2. Comparison of MOSAGA with different parameter settings for solving the NSF network 
in Figure 2. |NDS|: the number of non-dominated solutions; Running time = 60 seconds in each run. 

pop tmax  Max |NDS| Min |NDS| Average |NDS| 
50 50 16 16 16 
50 100 16 13 14 
100 50 16 12 15 
100 100 16 13 14 

4.3 Results on Random Networks with Two Objectives 

In order to visually analyse the impact of SA strategies, the adaptive mutation and the 
local search on the performance of the proposed algorithms, we carry out a series of 
experiments on random networks with two objectives, namely the cost and the delay as 
defined in Section 2. Four random networks have been generated with different network 
sizes (|V| =50 and |V| =100) and group sizes (number of destination nodes |R| = 20%*|V| 
and |R| = 30%*|V|). 

4.3.1 The Impact of Simulated Annealing Strategies 

In the first group of experiments, we compare MOSAGA with two evolutionary 
algorithms, MOEA1 (Crichigno and Baran 2004a) and MOEA2 (Crichigno and Baran 
2004b), to identify the impact of SA strategies to our multi-objective genetic local search. 
For a fair comparison, the same parameter setting in MOEA1 and MOEA2 has been used 
in the evolution process in our MOSAGA. The non-dominated solutions found by the 
three algorithms after 50 runs are shown in Figure 9, with their average computing time 
in Table 3. 

The experimental results clearly show that the MOSAGA algorithm found a set of better 
non-dominated solution compared with those from the two MOEA algorithms on 3 out of 
4 problems, i.e. Figure 9(a), (c) and (d). For the problem in Figure 9(b), MOSAGA is able 
to find better non-dominated solutions except those three solutions found by MOEA2. 
However, for all other three problems, MOEA2 has performed the worst. With regard to 
the computing time, MOSAGA requires the least computing time. This demonstrates that 
the SA strategies in MOSAGA can guide the search direction of genetic algorithm to find 
better solutions in less computing time in comparison with the MOEA algorithms. 
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(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15) 

   
(c) Cost vs. Delay (|V| = 100, |R| = 20) (d) Cost vs. Delay (|V| = 100, |R| = 30) 

Figure 9. The non-dominated solutions found by MOSAGA, MOEA1 and MOEA2 on random 
networks with two objectives in 50 runs  

Table 3. Average computing time of MOSAGA, MOEA1 and MOEA2 on random networks with 
two objectives. 

Network 
size 

Group 
size 

Computing time (sec) 

MOSAGA MOEA1 MOEA2 

50 10 7.068 25.211 25.544 

50 15 6.208 34.901 36.703 

100 20 13.342 88.411 96.489 

100 30 18.338 126.517 132.015 

4.3.2 The Impact of the Adaptive Mutation 

In the second group of experiments, we test the effect of the adaptive mutation by 
comparing it with four fixed mutation rates, i.e. Pm = 0.3, 0.6, 0.9, 1 in MOSAGA. The 
non-dominated solutions found by MOSAGA with different mutation rates after 50 runs 
are shown in Figure 10. In general, MOSAGA with the adaptive mutation rate has the 
best overall performance among all the other variants with fixed mutation rates, although 
the Pareto fronts found by variants of the algorithm interweaving at certain part of the 
front for some networks, i.e. Figure 10(b) and Figure 10(d). With the fixed mutation rate, 
MOSAGA occasionally finds several better non-dominated solutions, but failed to obtain 
the majority of solutions at the Pareto front found by MOSAGA with adaptive mutation 
rate for all four networks. The adaptive mutation rate makes the search more effective 
based on both the temperature and the fitness of the new solution and the current 
population. 
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(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15) 

  
(c) Cost vs. Delay (|V| = 100, |R| = 20) (d) Cost vs. Delay (|V| = 100, |R| = 30) 

Figure 10. The non-dominated solutions found by MOSAGA with different mutation rates on 
random networks with two objectives in 50 runs. 

4.3.3 The Impact of the Local Search 

In the third group of experiments, we compare the MOSAGA and MOSAGLS algorithms 
to demonstrate the effect of the local search in our proposed algorithms. The local search 
in MOSAGLS stops after a number of nodes (set as 10 here) has been flipped. 

The non-dominated solutions found by both algorithms for the four random networks 
in 50 runs are shown in Figure 11, clearly showing the improvement made by the local 
search in MOSAGLS. For the small network in Figure 11(a), MOSAGLS found four non-
dominated solutions, while MOSAGA found only two non-dominated solutions. For the 
same networks with larger group size and for networks of large size, it is obvious that 
MOSAGLA outperforms MOSAGA by finding much better non-dominated solutions. 
This demonstrates the efficiency of the local search in our proposed MOSAGLS 
algorithm. Please note the non-dominated solutions obtained by MOSAGA in Figure 11 
are different from the results of MOSAGA in Figure 10 due to the independent runs of 
experiments on the random networks. 

Table 4 presents the average computing time of MOSAGA and MOSAGLS on the 
four random networks, showing (not surprisingly) that MOSAGLS finds better solutions 
at the expenses of longer computing time compared with the MOSAGA algorithm. In real 
world applications, the balance of solution quality and the computational time should be 
concerned while designing the local search in MOSAGLS. This demonstrates that our 
proposed local search is able to improve the search results of MOSAGLS while 
consuming longer computational time. 
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(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15) 

  
(c) Cost vs. Delay (|V| = 100, |R| = 20) (d) Cost vs. Delay (|V| = 100, |R| = 30) 

Figure 11. The non-dominated solutions found by MOSAGLS and MOSAGA on random 
networks with two objectives in 50 runs 

Table 4. Average computing time of MOSAGA and MOSAGLS on random networks with two 
objectives. 

Network 
size 

Group 
size 

Computing time (sec) 

MOSAGA MOSAGLS 

50 10 0.573 4.076 

50 15 0.684 5.331 

100 20 1.62 22.198 

100 30 1.616 36.274 

4.4 Results on Benchmark and Random Problems with Different 
Objectives 

4.4.1 Results on the NSF Network with Four Objectives 

Based on the above observations, we compare the performance of the MOSAGLS and 
MOSAGA algorithms on the benchmark NSF network with that of MOEA algorithms. 
As mentioned in Section 4.2, the optimal Pareto front of 16 solutions for the NSF 
problem has been found in (Crichigno and Baran 2004b), concerning the four objectives 
(2), (3), (4) and (5) defined in Section 2. We thus consider the same four objectives in this 
group of experiments.  

The adaptive mutation rate has been applied in MOSAGLS and MOSAGA. To ensure 
a fair comparison between algorithms, we have re-implemented the MOEA algorithms, 
and compared the results obtained by the four algorithms within 60 seconds instead of 
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defining a fixed number of generations. Table 5 presents the maximum, minimum and 
average number of non-dominated solutions found by each algorithm in 50 runs.  

Table 5. The number of non-dominated solutions found by different algorithms on the NSF 
network in Figure 2 with four objectives. Computing time = 60 seconds. 

Algorithms Max |NDS| Min |NDS| Average |NDS| 

MOSAGLS 16 16 16 
MOSAGA 16 16 16 
MOEA1 16 14 15 

MOEA2 16 10 15 

For this small NSF problem, our proposed MOSAGLS and MOSAGA algorithms 
outperform the two MOEA algorithms, i.e. always find all 16 solutions in the optimal 
Pareto front in 50 runs. This, together with our above observations, indicates that SA 
based MOSAGA and MOSAGLS with adaptive mutation rate are more effective than the 
two conventional MOEA algorithms for multi-objective MRPs.  

4.4.2. Results on the NTT network with Five Objectives 

We also test our algorithms on the NTT (Nippon Telephone Telegraph) network in Figure 
12. Two different multicast groups have been tested, as shown in Table 6. We set the 
current traffic tij of each link as randomly loaded with around 50% of its total link 
capacity, which is the same as that in (Diego and Baran 2005). All algorithms have been 
evaluated with respect to all the five objectives defined in Section 2. 

 

 
Figure 12. The Nippon Telephone Telegraph (NTT) network of Japan with 55 nodes and 142 links. 
Costs are shown on each link. 

Table 6. Two different multicast groups used for the experiments on the NTT network in Figure 12. 
Multicast group Source Destination Set R |R| 
group1 (small) 5 {0,1,8,10,22,32,38,43,53} 9 
group2 (large) 4 {0,1,3,5,6,9,10,11,12,17,19,21,22,23,25,33,34,37,41,44,46,47,52,54} 24 

 

As the optimal Pareto front for the NTT network with all the five objectives defined 
in Section 2 is not known, we use a six-step procedure devised in (Diego and Baran 2005) 
to obtain an approximation of the Pareto front for each problem. The six-step procedure 
in (Diego and Baran 2005) is presented as follows: 

1) Each of the algorithms tested is run 10 times.  

2) For each algorithm, 10 sets of non-dominated solutions Y1, Y1, …, Y10 are obtained, 
one from each run. 
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3) For each algorithm, an aggregate collection of solutions YT is obtained, i.e. YT = 
10

1i

i
Y . 

4) The non-dominated solutions in YT are stored for each algorithm, denoted by Yalg. 

5) A set of solutions Y’ is obtained by combining all Yalg, i.e. Y’ =  Yalg 

6) The non-dominated solutions in Y’ are used as an approximation of the true optimal 
Pareto solution set, called YPF. 

Based on this approximation of the optimal Pareto solution set YPF, in order to have an 
insight of the quality of solutions obtained by each algorithm with regard to YPF, the 
following notations are used: 

-  YPF: the average number of solutions that are in YPF found by each algorithm in all 
runs; 

- YPF : the average number of solutions that are dominated by YPF found by each 
algorithm in all runs; 

- |Y |: the average number of any solutions found by each algorithm in all runs; 
- %YPF: the average percentage of solutions in YPF found by each algorithm in all runs, 

i.e.  YPF / |YPF |. 
 

(1) Comparisons of MOSAGLS with MOSAGA on the NTT network  

Firstly, to investigate the effectiveness and efficiency of the local search operator in our 
proposed MOSAGLS, we compare MOSAGLS with MOSAGA in which no local search 
is applied. Table 7 presents the total number non-dominated solutions in YPF obtained by 
MOSAGA and MOSAGLS for the NTT network in Figure 12 with two different 
multicast groups in Table 6 by using the above six-step procedure. For a fair 
comparison, the computational time for both algorithms for each run is 60 seconds. 

Table 7. Based on the six-step procedure, the total number of non-dominated solutions YPF 
obtained by MOSAGLS and MOSAGA for the NTT network with two different multicast groups 
with respect to all five objectives. 

Computational 
Time  

60 seconds each run 

Multicast Group group 1 group 2 
|

PF
Y | 6 11 

 

Table 8. Comparisons of MOSAGLS and MOSAGA for the NTT network with the small multicast 
group 1. Computational time for each run is 60 seconds. The best results are in bold. 

 

Algorithms PF
Y  

PF
Y  |

lga
Y | 

PF
Y%  

MOSAGLS 3.86 6.1 9 64.33% 

MOSAGA 3.02 7.52 10 50.33% 

 

Table 9. Comparisons of MOSAGLS and MOSAGA for solving the NTT network with the large 
multicast group 2. Computation time for each run is 60 seconds. The best results are in bold. 

 

Algorithms PF
Y  

PF
Y  |

lga
Y | 

PF
Y%  

MOSAGLS 1.9 9.06 10.96 17.27% 
MOSAGA 0.8 10.42 11.22 7.27% 

 

Results in both Table 8 and Table 9 show that MOSAGLS found more non-
dominated solutions  YPF than that of MOSAGA, and thus gave a better approximation 
to the Pareto Front. This becomes more obvious for the NTT network with the large 
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group size (see group2 in Table 6) in Table 9, where MOSAGLS found 17.27% of the 
non-dominated solutions in YPF, compared with 7.27% of solutions in YPF found by 
MOSAGA. Better experimental results obtained by MOSAGLS demonstrate that the 
local search operator can improve the performance of MOSAGLS by finding more non-
dominated Pareto optimal solutions for solving the multi-objective MRP with five 
objectives. 

 

(2) Comparisons of MOSAGLS with MOEA1 and MOEA2 on the NTT network 

Secondly, we compare MOSAGLS with other two multi-objective evolutionary 
algorithms MOEA1 and MOEA2 on the NTT benchmark problem with five objectives. 
Each algorithm has been run 10 times on each instance. 

Table 10 presents the total number non-dominated solutions in YPF obtained by the three 
algorithms for the two NTT instances by using the six-step procedure. For a fair and 
comprehensive comparison, all algorithms tested have been given the same computational 
time, i.e. 160 seconds and 320 seconds, respectively, for each run.  

Table 10. Based on the six-step procedure, the total number of non-dominated solutions in YPF 
obtained by MOSAGLS, MOEA1 and MOEA2 for the NTT network with two different multicast 
groups with respect to all five objectives. 
 

Running Time 160 seconds 320 seconds 
Multicast Group group1 group2 group1 group2 

| YPF | 44 16 42 17 

 

Table 11. Results of different algorithms for solving the NTT network with small multicast group 
1 in Table 6. 

Algorithms 
Running Time = 160 seconds 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 4.1 14.6 18.7 9.32% YMOSAGLS \ 0.57 0.8 

MOEA1 1.4 25.7 27.1 3.18% YMOEA1 0.33 \ 0.32 

MOEA2 1.8 14.1 15.9 4.09% YMOEA2 0.56 0.5 \ 

Algorithms 
Running Time = 320 seconds 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 5 17.1 22.1 12.9% YMOSAGLS \ 0.57 0.82 

MOEA1 4.8 18.6 23.4 11.4% YMOEA1 0.71 \ 0.96 

MOEA2 1.9 13 14.9 4.75% YMOEA2 0.57 0.49 \ 

 

Table 12. Results of different algorithms for solving the NTT network with large multicast group 2 
in Table 6. 

Algorithms 
Running Time = 160 seconds 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 7.3 11.2 18.5 45.63% YMOSAGLS \ 1 1 

MOEA1 0 17.8 17.8 0 YMOEA1 0 \ 0.64 

MOEA2 0 10.9 10.9 0 YMOEA2 0 0 \ 

Algorithms 
Running Time = 320 seconds 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 6.8 13.5 20.3 40% YMOSAGLS \ 0.95 1 

MOEA1 0.1 16 16.1 0.59% YMOEA1 0.06 \ 1 

MOEA2 0 12.1 12.1 0 YMOEA2 0 0 \ 

 

Table 11 and Table 12 present the results obtained for the NTT network with two 
different multicast groups. Both tables show that MOSAGLS found more non-dominated 
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solutions  YPF than that of MOEA algorithms. A measurement used in (Zitzler and 
Thiele 1999) is used here to calculate the coverage of the non-dominated solution set 
obtained by each algorithm. This is represented by the ratio of the number of non-
dominated solutions obtained by each algorithm to that of another algorithm. Tables 11 
and 12 show that the non-dominated solutions found by MOSAGLS cover the majority of 
the non-dominated solutions found by MOEA algorithms. This becomes more obvious 
for the NTT network with larger group size, where MOSAGLS found almost all non-
dominated solutions, while the MOEA algorithms found just one or no solution that 
belongs to MOSAGLS. 

 

4.4.3 Results on Random Networks with Five Objectives 

Finally, we test the effectiveness and efficiency of our algorithm upon a set of random 
networks of different characteristics with respect to all five objectives defined in Section 
2. We generate 10 random graphs for each network size of |V| = 50 and |V| = 100, and 
with different group sizes (|R| = 20%*|V| and |R| = 30%*|V|). Therefore, there are in total 
40 instances (10 for each of the four types of networks) tested. 

We set the same running time, i.e. 320 seconds for all algorithms in each run. Table 13 
presents the average number of non-dominated solutions (|

PF
Y |) obtained from 10 runs of 

the three algorithms on each of the four types of random networks by using the six-step 
procedure in Section 4.4.2.  

Table 13. The average number of non-dominated solutions on the random networks 
Network Size |V| = 50 |V| = 100 
Group Size |R| = 10 |R| = 15 |R| = 20 |R| = 30 

|
PF

Y | 264.4 196.2 91.4 105.2 

 

Table 14. Comparison of different algorithms on random networks of |V| = 50 with different group 
sizes. Computational time for each run is 320 seconds.  

Algorithms 
Group Size |R| = 10 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 37.72 66.08 103.8 14.69% YMOSAGLS \ 0.64 0.82 

MOEA1 6.48 110.46 116.94 2.91% YMOEA1 0.01 \ 0.55 

MOEA2 2.76 94.84 97.6 1.16% YMOEA2 0.01 0.19 \ 

Algorithms 
Group Size |R| = 15 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 30.3 61.9 92.2 15.91% YMOSAGLS \ 0.7 0.84 

MOEA1 3.26 95.7 98.96 1.67% YMOEA1 0.04 \ 0.76 

MOEA2 1.38 85.76 87.14 0.54% YMOEA2 0.02 0.14 \ 

 

Table 15. Comparison of different algorithms on random networks of |V| = 100 with different 
group sizes. Computational time for each run is 320 seconds.  

Algorithms 
Group Size |R| = 20 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 2.15 16.36 18.51 2.9% YMOSAGLS \ 0.9 0.97 

MOEA1 0.05 17.60 17.66 0.05% YMOEA1 0.004 \ 0.71 

MOEA2 0.004 14.72 14.72 0.004% YMOEA2 0.008 0.13 \ 

Algorithms 
Group Size |R| = 30 

 YPF YPF  |Y | % YPF  Coverage YMOSAGLS YMOEA1 YMOEA2 

MOSAGLS 0.928 4.146 5.074 0.93% YMOSAGLS \ 0.9 1 

MOEA1 0.13 5.62 5.75 0.08% YMOEA1 0.002 \ 0.7 
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MOEA2 0 4.59 4.59 0 YMOEA2 0 0.17 \ 

Table 14 and Table 15 present results of the three algorithms on the random networks 
with different characteristics. Average results from 10 runs on 10 different instances for 
each type of networks show that MOSAGLS significantly outperforms the two MOEA 
algorithms by finding more non-dominated solutions in YPF. The non-dominated solution 
set obtained by MOSAGLS covers most of the non-dominated solutions found by 
MOEA1 and MOEA2. This again demonstrates the effectiveness of our proposed 
MOSAGLS algorithm on the random networks with all five objectives defined. 

To summarise, the large amount of experiments on a range of multi-objective MRPs 
with different features demonstrate the efficiency and effectiveness of our proposed 
simulated annealing based multi-objective genetic local search algorithm MOSAGLS. 
The SA strategies improve the performance of the algorithm by finding better non-
dominated solutions in less computing time compared with conventional multi-objective 
evolutionary algorithms. The adaptive mutation contributes a better performance than that 
of fixed mutation rates. The local search further improves the performance of MOSAGLS, 
however at a higher computational time. Comparisons on both the benchmark problems 
and random networks demonstrate that the proposed MOSAGLS has the best 
performance among variants of algorithms, and show that MOSAGLS is able to find high 
quality solutions for multi-objective MRPs with different features. 

5 Conclusions 

In this paper, we investigate the first simulated annealing based multi-objective genetic 
local search (MOSAGLS) for solving multi-objective MRPs. A new simulated annealing 
based adaptive mutation probability is proposed in MOSAGLS, which can adaptively 
adjust the mutation rate according to the fitness of the new solution against the average 
quality of the current population during the genetic evolution procedure. In addition, two 
adaptation strategies based on simulated annealing are adopted to tune the search 
directions in MOSAGLS. One is the competition between similar members in the current 
population, another one is the two-phase strategy for tuning weight vectors. Integrated 
with these simulated annealing strategies, the hybrid multi-objective genetic local search 
is able to efficiently search towards the Pareto front and diversify the population with 
regard to the multiple objectives in the problem.  

Due to the complex structure of the multicast tree, an ordered set of paths has been 
used to represent solutions. Based on this simple solution representation, the crossover 
and mutation operators have been specifically designed concerning the network structure 
to facilitate efficient and effective operations and improve the objective values of the tree 
while satisfying the constraint. Finally, the local search further intensifies the search by 
exploring more promising neighboring solutions based on a binary string solution 
representation. 

Through a large amount of extensive simulations, we evaluate our proposed 
MOSAGLS on both benchmarks and a series of random networks with different 
objectives and different features. Experimental results show that the simulated annealing 
strategies significantly improve our proposed algorithm compared against another two 
conventional MOEA algorithms in the literature with respect to both the solution quality 
and computing time for the multi-objective MRPs. This demonstrates that better control 
of the evolution by using the simulated annealing strategies significantly improves the 
efficiency and effectiveness of MOSAGLS. Compared with the simulated annealing 
based multi-objective genetic algorithm without local search, MOSAGLS obtained 
significantly better results but at larger computational expenses. 

The proposed MOSAGLS algorithm has shown to be an ideal approach for solving 
the multi-objective MRPs, and is flexible to be extended to solve other multi-objective 
optimisation problems. In our future work, we also intend to investigate the influence of 
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different selection strategies and adaptive crossover in the hybrid algorithm. More 
efficient and effective local search methods and the choice of starting solutions for local 
search may be investigated to reduce the computational time of the hybrid algorithm. 
Other Pareto dominance methods may also be applied to further improve the search 
towards the Pareto front in the MOSAGLS algorithm. In addition, some recent powerful 
multi-objective optimization algorithms can be investigated in our future work. 
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