151 research outputs found

    The effect of the process on mechanical properties of polylactic acid - date palm leaf fibers composite films produced by extrusion blowing

    Get PDF
    Biocomposite films prepared with melt compounding and film blowing have become a new trend in plastic research to deliver more eco-friendly packages. Polylactic acid (PLA) was melt compounded with minimally processed date palm leaf fiber (DPLF) and converted into films by blown film extrusion. The compounding was done in order to enhance the film mechanical properties in one hand, and to decrease the film production cost in the other hand. In this present study, a reference PLA film and films with 1%, 2%, and 5% of DPLF (weight %) were produced with different process parameters. The spatial variations in films thickness and lay flat width indicate that the addition of DPLF up to 2% enhances the bubble stability for the tested process parameters. However, the composite with 5% DPLF shows nearly the same processability window as the neat PLA. The structural and mechanical characterizations of films suggest a reinforcing effect of the PLA matrix up to 2% of fiber (with an optimum at 1%). Larger DPLF loading leads to depressed and more anisotropic mechanical properties, related to an increased density of defects at the fiber-PLA fragile interface and to a DPLF-induced enhanced PLA thermal degradation and amorphous phase orientatio

    Hemodynamic-informed parcellation of fMRI data in a Joint Detection Estimation framework

    Get PDF
    International audienceIdentifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called Hemodynamic Response Function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a Joint Parcellation-Detection-Estimation (JPDE) procedure that incorporates an adaptive parcel identification step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes and supports is then achieved using variational approximations. Validation on synthetic and real fMRI data demonstrate the JPDE performance over standard detection estimation schemes and suggest it as a new brain exploration tool

    Coupling dynamics of a geared multibody system supported by Elastohydrodynamic lubricated cylindrical joints

    Get PDF
    A comprehensive computational methodology to study the coupling dynamics of a geared multibody system supported by ElastoHydroDynamic (EHD) lubricated cylindrical joints is proposed throughout this work. The geared multibody system is described by using the Absolute-Coordinate-Based (ACB) method that combines the Natural Coordinate Formulation (NCF) describing rigid bodies and the Absolute Nodal Coordinate Formulation (ANCF) characterizing the flexible bodies. Based on the finite-short bearing approach, the EHD lubrication condition for the cylindrical joints supporting the geared system is considered here. The lubrication forces developed at the cylindrical joints are obtained by solving the Reynolds’ equation via the finite difference method. For the evaluation of the normal contact forces of gear pair along the Line Of Action (LOA), the time-varying mesh stiffness, mesh damping and Static Transmission Error (STE) are utilized. The time-varying mesh stiffness is calculated by using the Chaari’s methodology. The forces of sliding friction along the Off-Line-Of-Action (OLOA) are computed by using the Coulomb friction models with a time-varying coefficient of friction under the EHD lubrication condition of gear teeth. Finally, two numerical examples of application are presented to demonstrate and validate the proposed methodology.National Natural Science Foundations of China under Grant 11290151, 11221202 and 11002022, Beijing Higher Education Young Elite Teacher Project under Grant YETP1201

    Sleep Quality and Physical Activity as Predictors of Mental Wellbeing Variance in Older Adults during COVID-19 Lockdown:ECLB COVID-19 International Online Survey

    Get PDF
    Background. The COVID-19 lockdown could engender disruption to lifestyle behaviors, thus impairing mental wellbeing in the general population. This study investigated whether sociodemographic variables, changes in physical activity, and sleep quality from pre- to during lockdown were predictors of change in mental wellbeing in quarantined older adults. Methods. A 12-week international online survey was launched in 14 languages on 6 April 2020. Forty-one research institutions from Europe, Western-Asia, North-Africa, and the Americas, promoted the survey. The survey was presented in a differential format with questions related to responses "pre" and "during" the lockdown period. Participants responded to the Short Warwick-Edinburgh Mental Wellbeing Scale, the Pittsburgh Sleep Quality Index (PSQI) questionnaire, and the short form of the International Physical Activity Questionnaire. Results. Replies from older adults (aged &gt;55 years, n = 517), mainly from Europe (50.1%), Western-Asia (6.8%), America (30%), and North-Africa (9.3%) were analyzed. The COVID-19 lockdown led to significantly decreased mental wellbeing, sleep quality, and total physical activity energy expenditure levels (all p &lt; 0.001). Regression analysis showed that the change in total PSQI score and total physical activity energy expenditure (F-(2,F- 514) = 66.41 p &lt; 0.001) were significant predictors of the decrease in mental wellbeing from pre- to during lockdown (p &lt; 0.001, R-2: 0.20). Conclusion. COVID-19 lockdown deleteriously affected physical activity and sleep patterns. Furthermore, change in the total PSQI score and total physical activity energy expenditure were significant predictors for the decrease in mental wellbeing.</p

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    GÉNÉRATION D'ULTRASONS DANS LES MATÉRIAUX PAR LASER IMPULSIONNEL CO2. APPLICATION À LA MÉTROLOGIE SANS CONTACT

    No full text
    La réponse acoustique de différents matériaux à des impulsions laser (CO2, YAg et excimère) a été étudiée à l'aide d'une sonde optique (donc sans contact). Les résultats permettent dans tous les cas de mesurer les dimensions des échantillons et indiquent que la réponse optimale est obtenue pour le laser CO2.An optical probe was used to test the acoustical response to a laser pulse from different materials. Best results are obtained with CO2 laser and this method can be used for distant measurements
    corecore