130 research outputs found

    Single-photon single ionization of W+^{+} ions: experiment and theory

    Full text link
    Experimental and theoretical results are reported for photoionization of Ta-like (W+^{+}) tungsten ions. Absolute cross sections were measured in the energy range 16 to 245 eV employing the photon-ion merged-beam setup at the Advanced Light Source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16 to 108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s  6DJ5s^2 5p^6 5d^4({^5}D)6s \; {^6}{\rm D}_{J}, JJ=1/2, ground level and the associated excited metastable levels with JJ=3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d^5 \; ^6{\rm S}_{J}, JJ=5/2, and for the 4^4F term, 5d^3 6s^2 \; ^4{\rm F}_{J}, with JJ = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+^+ the calculations reproduce the main features of the experimental cross section quite well.Comment: 23 pages, 7 figures, 1 table: Accepted for publication in J. Phys. B: At. Mol. & Opt. Phy

    Spectral Analysis of Guanine and Cytosine Fluctuations of Mouse Genomic DNA

    Full text link
    We study global fluctuations of the guanine and cytosine base content (GC%) in mouse genomic DNA using spectral analyses. Power spectra S(f) of GC% fluctuations in all nineteen autosomal and two sex chromosomes are observed to have the universal functional form S(f) \sim 1/f^alpha (alpha \approx 1) over several orders of magnitude in the frequency range 10^-7< f < 10^-5 cycle/base, corresponding to long-ranging GC% correlations at distances between 100 kb and 10 Mb. S(f) for higher frequencies (f > 10^-5 cycle/base) shows a flattened power-law function with alpha < 1 across all twenty-one chromosomes. The substitution of about 38% interspersed repeats does not affect the functional form of S(f), indicating that these are not predominantly responsible for the long-ranged multi-scale GC% fluctuations in mammalian genomes. Several biological implications of the large-scale GC% fluctuation are discussed, including neutral evolutionary history by DNA duplication, chromosomal bands, spatial distribution of transcription units (genes), replication timing, and recombination hot spots.Comment: 15 pages (figures included), 2 figure

    Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    No full text
    International audienceIndependent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45?55%, 37?53% and 5?22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates

    advanced electric propulsion diagnostic tools at iom

    Get PDF
    Abstract Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1] , which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1] , [4] ), in two different vacuum facilities

    Entropy estimates of small data sets

    Full text link
    Estimating entropies from limited data series is known to be a non-trivial task. Naive estimations are plagued with both systematic (bias) and statistical errors. Here, we present a new 'balanced estimator' for entropy functionals Shannon, R\'enyi and Tsallis) specially devised to provide a compromise between low bias and small statistical errors, for short data series. This new estimator out-performs other currently available ones when the data sets are small and the probabilities of the possible outputs of the random variable are not close to zero. Otherwise, other well-known estimators remain a better choice. The potential range of applicability of this estimator is quite broad specially for biological and digital data series.Comment: 11 pages, 2 figure

    Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic

    Get PDF
    Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom–up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of ‘controlling’, ‘masking’ and ‘directive’ environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19′89N, 10°09′06E, 12–21 psu, and North/Baltic Sea Canal NOK, 54°20′45N, 9°57′02E, 4–10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m−3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m−3 at NOK) and T. longicornis (to 1,959 m−3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match–mismatch dynamics

    The response of temperate aquatic ecosystems to global warming: novel insights from a multidisciplinary project

    Get PDF
    This article serves as an introduction to this special issue of Marine Biology, but also as a review of the key findings of the AQUASHIFT research program which is the source of the articles published in this issue. AQUASHIFT is an interdisciplinary research program targeted to analyze the response of temperate zone aquatic ecosystems (both marine and freshwater) to global warming. The main conclusions of AQUASHIFT relate to (a) shifts in geographic distribution, (b) shifts in seasonality, (c) temporal mismatch in food chains, (d) biomass responses to warming, (e) responses of body size, (f) harmful bloom intensity, (f), changes of biodiversity, and (g) the dependence of shifts to temperature changes during critical seasonal windows

    Local Renyi entropic profiles of DNA sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs.</p> <p>Results</p> <p>The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at <url>http://kdbio.inesc-id.pt/~svinga/ep/</url>.</p> <p>Conclusion</p> <p>The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.</p

    Measures and Limits of Models of Fixation Selection

    Get PDF
    Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure) and the KL-divergence (a distance measure of probability distributions) combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection . We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced
    • …
    corecore