14,521 research outputs found

    Transitioning Resolution Responsibility between the Controller and Automation Team in Simulated NextGen Separation Assurance

    Get PDF
    As part of an ongoing research effort on separation assurance and functional allocation in NextGen, a controller- in-the-loop study with ground-based automation was conducted at NASA Ames' Airspace Operations Laboratory in August 2012 to investigate the potential impact of introducing self-separating aircraft in progressively advanced NextGen timeframes. From this larger study, the current exploratory analysis of controller-automation interaction styles focuses on the last and most far-term time frame. Measurements were recorded that firstly verified the continued operational validity of this iteration of the ground-based functional allocation automation concept in forecast traffic densities up to 2x that of current day high altitude en-route sectors. Additionally, with greater levels of fully automated conflict detection and resolution as well as the introduction of intervention functionality, objective and subjective analyses showed a range of passive to active controller- automation interaction styles between the participants. Not only did the controllers work with the automation to meet their safety and capacity goals in the simulated future NextGen timeframe, they did so in different ways and with different attitudes of trust/use of the automation. Taken as a whole, the results showed that the prototyped controller-automation functional allocation framework was very flexible and successful overall

    Crystalline Silicate Emission in the Protostellar Binary Serpens--SVS20

    Full text link
    We present spatially resolved mid-infrared spectroscopy of the class I/flat-spectrum protostellar binary system SVS20 in the Serpens cloud core. The spectra were obtained with the mid-infrared instrument T-ReCS on Gemini-South. SVS20-South, the more luminous of the two sources, exhibits a mid-infrared emission spectrum peaking near 11.3 \micron, while SVS20-North exhibits a shallow amorphous silicate absorption spectrum with a peak optical depth of τ∼0.3\tau \sim 0.3. After removal of the the line-of-sight extinction by the molecular common envelope, the ``protostar-only'' spectra are found to be dominated by strong amorphous olivine emission peaking near 10 \micron. We also find evidence for emission from crystalline forsterite and enstatite associated with both SVS20-S and SVS20-N. The presence of crystalline silicate in such a young binary system indicates that the grain processing found in more evolved HAeBe and T Tauri pre-main sequence stars likely begins at a relatively young evolutionary stage, while mass accretion is still ongoing.Comment: Accepted for publication by The Astrophysical Journa

    Reticulocyte Maturation Parameters Are Reliable Early Predictors of Hematopoietic Engraftment after Allogeneic Stem Cell Transplantation

    Get PDF
    AbstractEarly detection of donor-derived hematopoietic restoration after allogeneic stem cell transplantation (allo-SCT) is a crucial issue in the management of heavily immunocompromised patients. The aim of this prospective study was to validate our previously defined cutoff values for reticulocyte maturation parameters as early predictors of hematopoietic engraftment. Importantly, the effect of clinical variables in reticulocyte engraftment was also sought. For this purpose, we prospectively studied 136 consecutive patients undergoing allo-SCT from related (n = 89) or unrelated (n = 47) donors. High fluorescence reticulocytes (RETH), immature reticulocyte fraction (IRF), mean fluorescence index (MFI), and mean reticulocyte volume (MRV) were automatically measured in peripheral blood samples drawn on a daily basis. We previously defined reticulocyte engraftment when MFI ≥10, RETH ≥3%, IRF ≥10%, and MRV ≥110 fL. Median neutrophil engraftment was 18 days (range, 10-35 days); for reticulocyte parameters, the values were 14 days for IRF (range, 7-45 days), 14 days for MFI (range, 7-43 days), 15 days for RETH (range, 7-43 days), and 21 days for MRV (range, 9-74 days). These differences reached statistical significance for MFI and IRF when compared with standard neutrophil recovery, even when analyzing siblings or unrelated donors separately. In univariate analysis, donor-recipient ABO disparity adversely influenced erythroid engraftment (P = .04 for IRF, P = .03 for MFI), but the infusion of >2.9 × 106/kg of CD34+ cells was associated with a shorter time to reach erythroid engraftment (P = .02 for IRF and MFI). In Cox regression analysis, ≥100/μL neutrophils and IRF ≥10% were predictive parameters for standard neutrophil engraftment. Based on these findings, we suggest that serial measurement of IRF or MFI should be routinely used to trace hematopoietic restoration after allo-SCT because these preceded standard neutrophil recovery by a median of 4 days and are therefore very useful to make clinical decisions

    Unveiling the Dynamics of the Universe

    Full text link
    We explore the dynamics and evolution of the Universe at early and late times, focusing on both dark energy and extended gravity models and their astrophysical and cosmological consequences. Modified theories of gravity not only provide an alternative explanation for the recent expansion history of the universe, but they also offer a paradigm fundamentally distinct from the simplest dark energy models of cosmic acceleration. In this review, we perform a detailed theoretical and phenomenological analysis of different modified gravity models and investigate their consistency. We also consider the cosmological implications of well motivated physical models of the early universe with a particular emphasis on inflation and topological defects. Astrophysical and cosmological tests over a wide range of scales, from the solar system to the observable horizon, severely restrict the allowed models of the Universe. Here, we review several observational probes -- including gravitational lensing, galaxy clusters, cosmic microwave background temperature and polarization, supernova and baryon acoustic oscillations measurements -- and their relevance in constraining our cosmological description of the Universe.Comment: 94 pages, 14 figures. Review paper accepted for publication in a Special Issue of Symmetry. "Symmetry: Feature Papers 2016". V2: Matches published version, now 79 pages (new format

    Charm Production in DPMJET

    Full text link
    In this work, charm production in the {\sc dpmjet} hadronic jet simulation is compared to experimental data. Since the major application of {\sc dpmjet} is the simulation of cosmic ray-induced air showers, the version of the code integrated in the CORSIKA simulation package has been used for the comparison. Wherever necessary, adjustments have been made to improve agreement between simulation and data. With the availability of new muon/neutrino detectors that combine a large fiducial volume with large amounts of shielding, investigation of prompt muons and neutrinos from cosmic ray interactions will be feasible for the first time. Furthermore, above ≳100\gtrsim 100 TeV charmed particle decay becomes the dominant background for diffuse extraterrestrial neutrino flux searches. A reliable method to simulate charm production in high-energy proton-nucleon interactions is therefore required.Comment: 10 pages, to be published in JCA

    Experimental phase function and degree of linear polarization curve of olivine and spinel and the origin of the Barbarian polarization behaviour

    Get PDF
    We explore experimentally possible explanations of the polarization curves of the sunlight reflected by the Barbarian asteroids. Their peculiar polarization curves are characterized by a large-inversion angle, around 30 degrees, which could be related to the presence of FeO-bearing spinel embedded in Calcium-Aluminum inclusions. In order to test this hypothesis, we have measured the phase function and degree of linear polarization of six samples of Mg-rich olivine and spinel. For each material, we have analysed the light scattering properties of a millimeter-sized grain and of two powdered samples with size distributions in the micrometer size range. The three spinel samples show a well-defined negative polarization branch with an inversion phase angle located around 24 degrees-30 degrees. In contrast, in the case of the olivine samples, the inversion angle is highly dependent on particle size and tends to decrease for larger sizes. We identify the macroscopic geometries as a possible explanation for the evident differences in the polarization curves between olivine and spinel millimeter samples. Although the polarization behaviour in near backscattering of the Barbara asteroid is similar to that of our spinel mm-sized sample in random orientation, this similarity could result in part from crystal retro-reflection rather than composition. This is part of an ongoing experimental project devoted to test separately several components of CV3-like meteorites, representative of the Barbarians composition, to disentangle their contributions to the polarization behaviour of these objects.Peer reviewe
    • …
    corecore